車載カメラの画像解析による視程障害検知技術に関する研究

研究予算:運営費交付金 研究期間:平30~令2 担当チーム:雪氷チーム 研究担当者:高橋丞二、萬直樹、金子学、 國分徹哉、大久保幸治、武知洋太、 櫻井俊光

【要旨】

本研究では、冬期道路における吹雪視程障害の要対策箇所を低コストかつ効率的に抽出することを目的に、AI 技術の畳み込みニューラルネットワーク(CNN)を活用して、車両に搭載されたカメラで撮影した画像から視程 障害の発生の検知、およびその程度を数段階に判別する技術の検討を行った。その結果、吹雪視程判別モデル構 築に用いる画像の学習条件について、次のことを明らかにした。1)吹雪発生(視程 200m 未満)の検知には、 色調がカラーで特定の画角でトリミングした画像を用いることが有効であった。2)吹雪の程度の判別には、色 調がカラーで特定の画角でトリミングしない画像を用いることが有効であった。以上から、CNN により目的に 応じた吹雪発生程度の判別が可能であると考えられる。

キーワード:深層学習、視程障害、吹雪対策、自然災害

1. はじめに

積雪寒冷地の冬期道路では、吹雪による視程障害や 吹きだまりによる交通障害が発生する。特に近年の北 海道では、急激に発達した低気圧が引き金となり、極 端な暴風雪による人命に関わるような吹雪災害に発展 するケースが見られる。暴風雪による吹雪災害を減ら すため、道路管理者は防雪柵等の吹雪対策施設を設置 しているが、必要とされる道路すべてに設置すること は予算的な観点から難しいものがある。また、適切な 設置箇所の抽出には現地観測および熟練技術者の判断 に頼るところが大きい。一方で、経験が乏しい場合は、 設置箇所を的確に判断することは容易ではない。

路線上の吹雪による視程障害が著しい箇所を抽出 するためには、定量的なデータの取得が必要となる。 その場合は、ビデオカメラ、視程計、風向風速計など を搭載した視程障害移動観測車(図 1)を用いて、吹 雪発生時に繰り返し観測している¹⁾。ただし、現地に 向かう時間と作業コストを要するうえ、暴風雪時に繰 り返し走行するには危険も伴う。そこで、視程障害移 動観測車のような特殊車両ではなく、該当路線を頻繁 に走行するパトロール車にカメラを搭載し、走行時に 得られた画像を活用し、吹雪による視程障害が発生す る箇所を経験の有無によらず簡易的に抽出することが 可能となれば、生産性の向上と、コスト縮減が期待で きる。そこで本研究では、平成 30 年度から AI (Artificial intelligence)を活用した吹雪による視程

図1 視程障害移動観測車

障害の著しい道路箇所を抽出するための手法について 検討を開始した。

AIには様々なものがある²⁾。画像認識・検出に利用 される AIには、たとえば畳み込みニューラルネット ワーク(Convolutional Neural Network, CNN)³⁾ が代表的であり、CNN は多種多様な分野で利用され ている。近年では、普通乗用車等に搭載された車載カ メラ画像に関する研究もあり、たとえば、車載カメラ から舗装の状態を検知する方法^{4,5)}、歩行者の流れを車 載カメラで分析する方法⁶⁾、悪天候を CNN で判断し 急ブレーキの推定を行う研究⁷⁾、豪雨、多量降雪や霧 などの悪天候において最適な走行速度を推定するため の研究⁸など、道路研究分野においても CNN が利用 され始めている。

吹雪による視程障害などの道路交通状況を提供す る方法には CNN だけでなく、背景が固定された CCTVカメラの静止画像から視程を自動的に数値化し てランク付けし、視程情報を道路管理者に提供する画 像解析システムが開発されている⁹。しかし、車載カ メラのような走行時に背景が変わる画像で、かつ吹雪 時における視程を推定する技術について研究事例はほ とんどない。

そこで本研究は、CNN を活用し、車載カメラで撮 影した画像から吹雪による視程障害の発生を検知し、 さらに、その程度を数段階に判別する技術を検討する ことを目的とする。

2. 研究概要

本章では、吹雪画像を用いた視程障害判別実験にお いて判別対象とした視程ランク、CNN による実験手 順について記す。なお、実験で利用する吹雪画像は、 視程障害移動観測車(図 1)に搭載されている車載カ メラにより撮影された動画を切り出した静止画である。

2.1 視程障害検知に向けた判別する視程ランクと視 程データ

視程の定義は、空を背景としたとき視角 0.5~5°程度となる黒ずんだ目標物が肉眼で識別できる最大の距離¹⁰⁾とされる。この定義は、主に霧に適用されるものであるが、吹雪時の視程についてもこの概念を応用し、吹雪時の視程を評価¹¹⁾している。

ドライバーの運転挙動に基づき区別される視程の ランクは、視程 1,000m 以上をランク A、500m~ 1,000m 未満をランク B、200m~500m 未満をランク C、100m~200m 未満をランク D、100m 未満をラン ク E とする 5 つがある¹²⁾。本研究では、吹雪の発生有 無について CNN で判別するため、ドライバーの運転 挙動に影響を与える視程 200m 未満を「吹雪発生」、 200m 以上を「吹雪未発生」とする。各ランクの代表 的な画像を図 2 に示す。この 5 段階の視程ランクおよ び 2 段階で吹雪発生有無を CNN で評価することとし た。

車載カメラで撮影された画像に映り込む目標物等 は様々であり、また道路線形も多様であるため、視程 の定義に合致させることは難しい。そこで本研究では、 視程障害移動観測車(図1)に搭載された車載式前方 散乱型(明星電気(株)製 TZF-31A)の視程データ を利用する。サンプリング周波数は10Hzで1秒平均

図2 各視程ランクの代表的な画像

値の視程データである。なお、車載式前方散乱型視程 計は、車両のフロント部分に取り付けられており、出 力される値は、車両から前方方向の視程に相当するも のではないことに留意したい(3章に詳細を記す)。

2.2 CNNの概要

一般的に深層学習による画像認識は、「正解」がわ かっている「教師データ」を用いて学習した「判別モ デル」に、「未知の画像」を入力して確信度を算出させ、 「未知の画像」が「正解」かどうかを判別するもので ある(図 3)²。CNN はその手段の一つである。

図3 深層学習による画像認識の概念図

図 4 に示すように、CNN は入力画像に対して 「Convolutional 層 (畳込み層)」、「Pooling 層 (プー リング層)」と「出力層」で構成されている²⁰。 Convolutional 層は、フィルターを利用して特徴の抽 出を行う。Pooling 層は Convolutional 層から出力さ れた情報を圧縮し、その特徴をまとめる処理を行う。 CNN は Convolutional 層と Pooling 層の処理を繰り 返し、最終的に得られる特徴を基に出力層でカテゴリ 毎に確信度を算出するものである。

確信度の評価は、Recall (再現率)、Precision (適 合率)、F-score (調和平均) および Accuracy (正解率) が利用される。以下に、これら4つの評価方法につい て定義を示す。

- Precision (適合率)とは、モデルが正解と判別した中に、どの程度本当の正解が含まれているか示す値であり、正確性に関する指標である(図5)。
- Recall (再現率)とは、全正解に対してモデルが 正解と判別した中に、本当の正解がどの程度含ま れているか示す値であり、網羅性に関する指標で ある(図 6)。
- F-score (調和平均) とは、Precision と Recall の
 2 つの指標だけでは客観的に精度がわかりづらいため、Precision と Recall から F-score (調和平均)を算出した値である。F-score は次式により算出している。

Accuracy(正解率)とは、「モデル全体のテスト データ総数」に対する「モデルが正解した総数」 の割合である。本研究で利用する CNN で得られ た結果においても、上述した評価手法を用いるこ ととする。

図6 Recall (再現率)の概念図

2.3 CNN による視程障害判別実験の手順

視程障害移動観測車に搭載した車載カメラで撮影 された動画から切り出した静止画の吹雪時の視程ラン クを、CNN を活用して判別させる。車載カメラで撮影された静止画は、時々刻々と背景と吹雪の視程が変化する。そのため、CNN で画像を判別する前に画像を解析することが必要である。

図7に深層学習による視程障害判別実験の手順を示 す。①深層学習用の吹雪画像を作成し(3章)、②吹雪 画像と組み合わせた視程評価手法の検討を行った(4 章)。その結果を踏まえて③深層学習の学習条件(パラ メータ)の検討を行い(5章)、さらに④画像の前処理 手法の検討し(6章)、最後に、⑤作成した吹雪画像判 別モデル(以降では、モデルとする)を評価した(7 章)。

各検討では目的に応じたモデルを作成し、判別精度 を評価しているが、判別させるテストデータは判別結 果を公正に評価するため、教師データと重複しない データを使用している。なお、CNN の解析にはハイ スペック PC が必要となる。表1に、モデル作成の深 層学習に利用した PC の実行環境およびソフトウェア を示す。

図7 深層学習による視程障害判別実験の手順

表1 CNN の実行環境

項目	仕様等
CPU	Xeon Bronze
GPU	Quadro P6000
Software	ViDi Suite (COGNEX 社製)

3. 深層学習用画像作成

図8に、動画を撮影した一般国道を示す。各動画は、 平成26年1~3月、平成26年12月~平成27年3月 の午前9時から午後5時の間に撮影されたものであり、 いずれも道路周辺に積雪があるものを使用した。動画 から静止画像を切り出すタイミングは、視程計の1秒 データに合わせて1秒とした。なお、切り出した静止 画像からワイパーの写り込み、ピントずれ、トンネル 内の画像および日没後の周囲が暗い画像など吹雪の認 識に支障となると考えられる画像は除外した。切り出 す静止画像の解像度は 1,280×720pixel とし、色調は カラー(RGB)とした。動画から切り取られた画像の 総数は 18,800 枚程で、そこからワイパーの映り込み 等によりモデル作成に適さない画像を任意に除外し、 モデル作成には 13,000 枚程の画像を用いた。

図8 動画の撮影箇所

4. 画像の視程評価手法の検討

車載カメラで撮影された画像と、視程計で計測され た視程値が一致していることが望ましいが、視程計に よる測定範囲は車両フロント部分における装置の十数 cmの極狭い範囲に限られる¹³⁾。そのため、遠方まで の視野を対象とする画像と、視程計による視程値の違 いが生ずることがある(図9)。

図 9 視程計測値と吹雪状況が相違している画像 視程計:86m(視程ランク E) 画像を目視で読み取った視程:視程ランク B

こうしたデータを使用して学習したモデルでは、正 しく吹雪を判別できないと考えられる。そこで、画像 の視程を適切に評価する手法を検討した。また、車載 カメラで撮影された画像は、道路の平面、縦断線形、 時刻等により道路に対する画角や見通し、情景の明暗 が複雑に変化する。

4.1 視程の評価手法の検討

画像の視程を適切に評価するため、撮影された画像 の時刻から継続的に走行して得られた視程データを含 めることで、吹雪の奥行きを評価することとした。す なわち、次の3つの手法(図10)で求めた画像の視程 評価値を用いたモデルとした。これらのモデル毎の判 別精度を評価することで、画像と組み合わせる視程評 価値の決定手法を検討した。なお、表2に、画像の視 程評価手法を検討するためのソフトウェアの学習パラ メータを示す。設定した学習パラメータは、Feature Size (以降では、特徴サイズとする)、Color および Count Epochs(以降では、エポック数とする)である。

▶計測視程 1:画像切り出し時刻の視程値

▶計測視程 2:画像切り出し時刻から 4~7 秒までの間の視程値の平均(50m 程度走行)
 >計測視程 3:画像切り出し時刻から 9 秒後までの視程値の平均(時速 40km/h で 100m 程度また)

図10 画像の視程評価手法

表 2	ViDi Suit	e の学習条件の設定値
-----	-----------	-------------

Feature size	200 pixel
Color	3(RGB カラー)
Count epochs	50回(デフォルト)

4.2 視程評価手法検討の教師データ

作成した画像を前節の3つの手法により視程に応じた A~Eの視程ランクに振り分けた。しかし、視程ランク A~E それぞれの画像枚数には偏りがある。視程

ランク A~E の画像データ数が異なるとデータ数の多 い視程ランクに判定が偏り、公正な判別の妨げとなる 可能性がある。そこで、全ての視程ランクにおける教 師データの画像枚数を同一の250枚とした。この画像 枚数は、最もデータ数の少なかった計測視程3のラン クEの127枚を水平反転によりデータ補充し確保が可 能な枚数である。画像枚数が250枚を超えているラン クは、ランク毎の全データ序列に乱数を与え、ランダ ムに 250 枚を抽出した。また画像は、画角内に写り込 んだ地物に対する方向が統一されていない。あらかじ めワイパーの映り込み等によるピントずれ等を除外し ていても、車体ボンネットが大きく写り込んでいる画 像とほとんど写っていない画像が混在していた。車体 ボンネットの有無による判別への影響を避けるため、 教師データに用いる画像の対象領域(以下、対象領域) を図 11 のとおり画像上端から 82%に設定した(図 11 の赤い部分)。

図11 対象領域の設定範囲

4.3 作成モデルの評価手法

3 つの手法で評価視程を変えたモデルの判別精度は、 2.2 節の評価項目により各モデルを評価した。評価に あたり、モデル作成に利用した画像数が、1 つの視程 ランク当たり 250 個と、一般的な深層学習のデータ数 としては少ないため、作成モデルの評価は、データ数 が少ない場合の評価手法として用いられる k・分割交 差検証を導入した(図 12)。k・分割交差検証とは、モ デル作成に使用したデータをk個のグループに分割し、 k・1 個のグループを教師データとし、残った 1 個のグ ループを検証データとして、教師データと検証データ を入れ替えながらk回検証を行い、その平均をモデル の評価値とするものである。本検討では k=5 とした。

図 12 k-分割交差検証の概要

4. 4 視程評価手法検討のテストデータ

前節の評価手法は、教師データを分割して行うもの であるため、教師データとは別の画像でも同じ評価を 得られるか検証した。検証は、最も判別精度が高いモ デルを用いて、2 つのテストを行った。1 つは、モデ ルが学習した画像と類似した風景の画像を判別できる か検証するためのテストで、これをテスト 1 とする。 もう 1 つは、モデルが学習した画像と全く違う景色の 画像を判別できるか検証するためのテストで、これを テスト 2 とする。それぞれのテストには、次のデータ を用いた。モデル作成に使用した教師データとテスト データの関係を表 3 に示す。

▶テスト1:教師データと同じエリアの画像

▶テスト2:教師データと異なるエリアの画像

なお、テスト1の画像と教師データの画像は同じ路 線・区間であるが、それぞれ重複しないデータを使用 している。

表3 モデル作成およびテストに使用した路線・区間

データ区分	方面	R231	R232	R238
エゴ ッ (4) 本田	上り	KP25k~52k	KP47k~74k	KP228k~262k
モテル作成用	下り	KP15k~52k		
テスト1用	上り	KP25k~52k	KP47k~74k	KP228k~262k
	下り	KP15k~52k		
	上り	KP15k~24k		
テスト2用	下り			

4.5 視程評価手法の解析結果

4. 5. 1 k-分割交差検証の判別結果

画像の組み合わせる視程評価手法を検討するため、 評価手法を変えた3つのモデルの判別結果を表4に示 す。なお、表内の赤丸は、3つのモデルでの項目毎の 最高スコアを示す。その結果、計測視程1で作成した モデルは、Accuracyが58.2%であり、3つのモデル中 で最低であった。また、ランクD、EのRecallが低い ことから、視程200m未満の視界がかなり悪い状態(吹 雪発生)を判別できておらず、実用的な面で問題があ ると考えられる。次に、計測視程2で作成したモデル は、Accuracyが76.3%であり、3つのモデル中で2番 目に良い値であった。また、ランクD、EのRecall も概ね良好であった。最後に、計測視程3で作成した モデルは、Accuracyが82.3%であり、3つのモデル中 で最高であった。また、全ランクのRecall、Precision、 F-score も3つのモデル中で最高であった。

以上のことから、画像に組み合わせる視程評価値は、 "画像切り出し時刻から9秒後までの視程値の平均(計 測視程3) "を用いることが適していると考えられる。

4. 5. 2 テスト1の判別結果

前項で最も評価の良かった計測視程3のモデルを使 用し、教師データと同じエリアの画像を用いたテスト 1の判別結果を表5に示す。Accuracyは82.8%と高い 精度で吹雪を判別できていた。また、ランク毎のRecall、 Precision、F-score も高い値であり、k-分割交差検証 の判別結果と傾向が概ね一致している。

4. 5. 3 テスト2の判別結果

前項と同様に、計測視程3のモデルを使用し、教師 データと異なるエリアの画像を用いたテスト2の判別 結果を表6(上表:成績表)に示す。Accuracyは46.0% と低い判別精度であった。特に、ランクEのRecall、 Precision、F-scoreは0%であり、著しい視界不良を全 く判別できなかった。しかしながら、不正解の内訳が 計測値に対して予測値のずれが1ランクだけのものが 多くあった(表6下表:混同行列)。現場の状況を画像 で確認すると、吹雪の濃淡以外に画像の景色や前方車 両の写り込みといった点が誤った判別の原因となって いることが確認できた。

4.5.4 画像の視程評価手法検討の考察

画像に組み合わせる視程評価値は、計測視程3のモ デルの判別精度が最も高かったことから、画像切り出 し時刻から9秒後までの視程値の平均とする手法が適 していると考えられる。

テスト1の結果から、モデルが学習した画像と風景

が類似した画像は、画像から吹雪を良好に判別できて いることが分かった。また、テスト2の結果から、モ デルが学習した画像と風景が異なるエリアの画像は、 画像から吹雪を判別できていないことが分かった。し かしながら、テスト2の不正解の内訳が計測値に対し て予測値が1つだけずれただけだったものが多かった ことから、教師データの構成等を改善することにより、 精度が向上する可能性がある。

表4 k-分割交差検証の判別結果 計測視程1: 画像切り出1時刻の視程値

1 (四)7元/	性 1. 回该	画家切り山し時刻の院性値				
=>./5	Recall	Precision	F-score	accuracy		

ランク	(再現率)	(適合率)	(調和平均)	(正解率)
А	81.2%	73.6%	77.2%	
B 69.6%		77.7%	73.4%	
С	43.2%	54.0%	48.0%	58.2%
D	53.2%	41.4%	46.6%	
E	44.0%	59.8%	50.7%	ſ

計測視程 2: 画像切り出し時刻から 4~7 秒までの 間の視程値の平均

ランク	Recall (再現率)	Precision (適合率)	F-score (調和平均)	accuracy (正解率)
А	88.4%	88.4%	88.4%	
В	78.4%	71.8%	75.0%	
С	64.4%	69.7%	66.9%	76.3%
D	67.2%	71.5%	69.3%	
E	83.2%	84.9%	84.0%	

計測視程 3: 画像切り出し時刻から 9 秒後までの視 程値の平均

ランク	Recall (再現率)	Precision (適合率)	F-score (調和平均)	accuracy (正解率)
А	88.4%	89.8%	89.1%	
В	82.0%	77.7%	79.8%	
С	72.4%	81.5%	76.7%	82.3%
D	82.8%	76.4%	79.5%	
E	86.0%	89.2%	87.6%	

表5 テスト1の判別結果

ランク	Recall (再現率)	Precision (適合率)	F-score (調和平均)	accuracy (正解率)
А	84.0%	87.5%	85.7%	
В	74.0%	80.4%	77.1%	
С	76.0%	80.9%	78.4%	82.8%
D	98.0%	75.4%	85.2%	
E	82.0%	100.0%	90.1%	

表 (3 テス	ト2	の判別結果
表 (3 テス	$\vdash 2$	の判別結

ランク	Recall (再現率)	Precision (適合率)	F-score (調和平均)	accuracy (正解率)
А	100.0%	90.9%	95.2%	
В	40.0%	45.5%	42.6%	
С	46.0%	30.3%	36.5%	46.0%
D	44.0%	30.1%	35.8%	
E	0.0%	0.0%	0.0%	

I			-		-	予測			·
	混同行列		同行列		吹雪未発生			吹雪発生	
(Confusion Matrix)		sion Matrix)	A 1000m以上	B 500m以上 1000m未満	C 200m以上 500m未満	D 100m以上 200m未満	E 100m未満	分類不可	
		吹	A 1000m以上	50	0	0	0	0	0
		雪未 発生	B 500m以上 1000m未満	4	20	20	5	0	1
	計測値		C 200m以上 500m未満	0	17	23	10	0	0
		吹雪	D 100m以上 200m未満	0	3	24	22	1	0
		発生	E 100m未満	1	4	9	36	0	0

5. 学習パラメータの検討

5.1 概要

前章までの結果を踏まえて、吹雪状況の判別に重要 な影響を与えると推測される Feature Size と、モデル の過学習を抑えるため Count Epochs を検討対象とし た。特徴サイズは AI が着目する画像範囲であり、エ ポック数は学習回数である。図 13 に検討手順の概要 を示す。まず、特徴サイズの値を変えたモデルを複数 作成し、2.2 節の評価項目により各モデルを評価した。 次に、特徴サイズの最適値を用いて、エポック数を変 えたモデルを複数作成し、各モデルを評価した。

図13 学習パラメータの検討手順

5. 2 学習パラメータ検討の教師データおよびテスト データ

教師データの構成等を次のとおり見直した。テスト データは、教師データの見直しで作成したデータ群か ら教師データと重複しないデータをランダムに抽出し た。

- ▶静止画切り出しのタイミングを 0.1 秒とし、画像 数が少ないランク D、Eの画像を増強
- ▶前方車両が大きく写り込んでいる画像を除外
- ≻目視により読み取った視程と、画像の視程評価値 に2ランク以上の乖離がある画像を除外

学習パラメータ検討に用いるデータ数を表7に示す。 なお、ランクAは視程1,000m以上で視程障害が発生 していない状態であるため、検討の対象外とした。

増強したデータ画像の総数は8,854枚である(表7)。 この8,854枚の画像のうちのランクB~Eそれぞれの 画像枚数には偏りがあり、最も偏りが大きかったのは ランクDの画像枚数が3,405枚に対して、ランクC の画像枚数は779枚であった。そこで、全てのランク における教師データの画像枚数をランク毎に400枚、 テストデータの画像枚数をランク毎に100枚とした。 教師データ、テストデータの抽出はランク毎の全デー タ序列に乱数を与え、ランダムに抽出した。

表7 学習パラメータ検討に用いるデータ数

	データ数					
データ種別	吹雪未発生		吹雪発生			
	В	С	D	Е	ĒI	
教師データ	400	400	400	400	1,600	
テストデータ	100	100	100	100	400	
未使用	1,708	279	2,905	1,962	6,854	
≣†	2,208	779	3,405	2,462	8,854	

5.3 学習パラメータの設定値

5. 3. 1 特徴サイズ検討の学習パラメータ

特徴サイズは、識別したいシンボルの大きさに応じ て設定するものである。しかし、画像に写っている吹 雪には、その大きさを示す指標がない。そこで、道路 標識を識別したいシンボルと仮定し、特徴サイズの範 囲を決定した。画像に写っている約 100m 先の道路標 識のサイズは、画像全体との比で換算したところおよ そ 200pixel である。そこで、AI ソフトウェアにデフォ ルトで設定されている 60pixel の 1/2 である 30pixel を下限、200pixel の 2 倍の 400pixel を上限として、 特徴サイズを検討した。 画像特徴サイズを検討するモデルの AI ソフトウェ アの学習パラメータは、表8のとおり設定した。

XΟ VIDI Dulic ♥	「日本日の反応」
Feature size	表9による
Color	3 (RGB カラー)
Count epochs	50回(デフォルト)

表8 ViDi Suite の学習条件の設定値

表9 特徴サイズの設定値

		Featur	e Size	(単位:	Pixel)		
30	60	90	120	150	200	300	400

5. 3. 2 エポック数検討の学習パラメータ

エポック数は、モデルの学習不足、過学習を抑える ために検討が必要であるが、学習に使用する画像や特 徴サイズなどの学習パラメータ設定値によって適正な 値が変わるため、基準となる値がない。そこで、AI ソフトウェアのデフォルトで設定されている 50 回の 1/10 である 5 回を下限、4 倍である 200 回を上限とし て、エポック数を検討した。

エポック数を検討するモデルの AI ソフトウェアの 学習パラメータを表 10 のとおり設定した。

表 10 ViDi Suite	の学習条件の設定値
-----------------	-----------

Feature size	200 pixel
Color	3 (RGB カラー)
Count epochs	表 11 による

表 11 エポック数の設定値

Count Epochs(単位:回)							
5	10	25	50	75	100	150	200

5. 4 学習パラメータ検討の実験結果

5. 4. 1 特徴サイズ検討の判別結果

モデル作成の学習パラメータである特徴サイズの 最適値を検討するため、特徴サイズを変えた8つのモ デルの判別結果を図14に示す。

モデルの Accuracy が最も高かったのは、特徴サイ ズが 150pixel および 200pixel のモデルであった。 Recall、Precision および F-score はランク毎に変化の 傾向が異なっていた。吹雪判別は、吹雪の発生を判別 できることが重要であるため、その境の吹雪発生側で あるランク Dの Recall に注目した。ランク Dの Recall が高かったモデルは、特徴サイズが 200pixel のモデル

図 14 特徴サイズを変更した判別結果

であり、Accuracy も他のモデルより高かったことから、 特徴サイズは 200pixel が適していると考えられる。な お、特徴サイズは、画像の解像度に依存し最適値が変 化するため、得られた結果は、本研究のモデル作成に 用いた画像に限るものである。

5. 4. 2 エポック数検討の判別結果

モデル作成の学習パラメータである特徴サイズの

最適値を検討するため、特徴サイズを変えた8つのモ デルの判別結果を図15に示す。なお、学習パラメー タの特徴サイズは、前項の結果から200Pixelとした。

モデルの Accuracy が最も高かったエポック数は 150 回で 64%、最も低かったエポック数は 5 回で 58% であり、エポック数の違いによる大きな差は見られな かった。ランク毎の Recall ではランク B、C、D がエ ポック数の増加に伴い Recall が上昇する傾向が見ら

図15 エポック数を変更した判別結果

れたが、ランク E はエポック数の増加により Recall が下降する傾向が見られた。ランク E は著しい吹雪が 発生している画像であり画像の情景に白色が多く含ま れるため画像毎の背景の変化が少ない。そのため、他 ランクよりも過学習が起きやすかったと思われる。

ランク Eの過学習を最小限に抑えるにはエポック数 を小さい値にすることが有効となる。しかしながら他 ランクではエポック数 150 回まで過学習の傾向が見ら れないことから、各ランクの再現率が 60~70%程度に 集中してランク毎の偏差が小さくなっているエポック 数 50 回が吹雪視程のランク判別に適していると考え られる。

6. 画像の前処理手法検討

6.1 概要

教師データやテストデータに用いる画像の色調や 画角が吹雪の視程判別に与える影響を検討するため、 画像の前処理を変えた2つのモデルを作成し評価した。 前処理は、色調をカラーからモノクロに変更する手法

図16 無加工および前処理加工した画像(代表)

と、「ボンネットや地吹雪の判別に不向きな遠方の道 路構造物より上空の写り込みをカットした画角」にト リミングする手法とした。各手法の代表画像を図 16 に示す。

6.2 画像の前処理検討の教師データ、テストデータ および学習パラメータ

教師データとテストデータは、前章と同じデータを 使用した。また、学習パラメータを表 12 のとおり設 定した。

表 12 ViDi Suite の学習条件の設定値

Feature size	前章の最適値
Color	1(モノクロ)
	又は3 (RGB カラー)
Count epochs	前章の最適値

6.3 画像の前処理手法検討の実験結果

画像の色調や画角が吹雪の視程判別に与える影響 を検討するため、画像の前処理を変えた2つのモデル の判別結果を表13に示す。なお、学習パラメータは 前章の検討結果から、特徴サイズを200pixel、エポッ ク数を50回とした。

モデルの Accuracy が最も高かったのは①の前処理 していない解像度1280×720pixelのカラー画像で作成 したモデルであった。ただし、本研究の目的である吹 雪の程度を判断するためには、著しい視程障害である ランク E を適切に評価する必要がある。そのため、ラ ンク E に注目すると、ランク E の Recall が最も高かっ たのは③のトリミングした画像で作成したモデルで あった。これはトリミングにより画像の背景に白色の 占める割合が大きくなることで、ランク E の特徴が顕 著になったと考えられる(図 17)。以上から、吹雪の 程度の判断を目的としたモデルの作成にはトリミング した画像を用いることが有効と思われる。

一方、吹雪発生の検知は、前処理の有無にかかわら ず高い Accuracy であったが、最も高かったのは①の 前処理していない画像で作成したモデルであった。③ は判別結果の混同行列(図18)からランクDをラン クCとして誤って判別した数が多いことが分かった。 これはトリミングにより画像の背景に白色以外の色が 占める割合が大きくなったことが原因の1つにあると 思われる(図18)。以上から、吹雪の発生(視程200m 未満)の検知を目的としたモデルの作成には、①のよ うに色調がカラーで、特定の画角でトリミングしない 画像を用いることが有効と思われる。 表 13 画像の前処理を変えた判別結果 ①前処理なし

(解像度:1280×720pixel、カラー画像)

ランク	Recall 再現率	Precision 適合率	F-score 調和平均	Accuracy 正解率
В	59%	74%	66%	
С	58%	55%	57%	6404
D	71%	59%	65%	04%
E	67%	71%	69%	
吹雪発生の 検知	Recall 再現率	Precision 適合率	F-score 調和平均	Accuracy 正解率
吹雪未発生 ランクB・C	90%	97%	93%	0304
吹雪発生 ランクD・E	97%	91%	94%	93%

②Color 変更あり、トリミングなし

(解像度:1280×720pixel、モノクロ画像)

=>./7	Recall	Precision	F-score	Accuracy
500	再現率	適合率	調和平均	正解率
В	26%	79%	39%	
С	72%	44%	55%	50%
D	46%	47%	47%	50%
Е	57%	54%	55%	
吹雪発生の 検知	Recall 再現率	Precision 適合率	F-score 調和平均	Accuracy 正解率
吹雪未発生 ランクB・C	88%	89%	88%	990/
吹雪発生 ランクD・E	89%	88%	88%	00%

③Color 変更なし、トリミングあり

(解像度 1280×360pixel、カラー画像)

ランク	Recall 再現率	Precision 適合率	F-score 調和平均	Accuracy 正解率
В	51%	74%	60%	
С	62%	48%	54%	C10/
D	57%	58%	57%	01%
E	73%	73%	73%	
吹雪発生の 検知	Recall 再現率	Precision 適合率	F-score 調和平均	Accuracy 正解率
吹雪未発生 ランクB・C	90%	91%	90%	000%
吹雪発生 ランクD・E	90%	90%	90%	90%

図 17 各ランクのトリミングした画像(③代表)

①前処理なし

(解像度:1280×720pixel、カラー画像)

③Color 変更なし、トリミングあり(解像度 1280×360pixel、カラー画像)

図 18 ランク D の判別結果

7. まとめ

吹雪視程障害の要対策箇所を低コストかつ効率的 に抽出することを目的に、AI 技術を活用して、車に搭 載されたカメラで撮影した画像から視程障害の発生を 検知し、さらに、その程度を数段階に判別する技術の 検討を行った。その結果、以下のことを明らかとした。

- 面像に組み合わせる視程は、"画像切り出し時刻から9秒後までの視程の平均"を用いたモデルが最も 判別精度が高かった。
- 2) モデルが学習したエリアと同じエリアの画像は、吹雪の判別精度が高いが、異なるエリアの画像は判別 精度が低かった。しかしながら、1 ランク違いでの 誤判別が多く、教師データの構成等を改善すること により、精度が向上する可能性がある。
- 本研究で用いた画像では、AI ソフトウェアの学習 パラメータである特徴サイズは 200pixel、エポック 数は 50 回が最も吹雪判別に適していた。
- 4) 吹雪の程度の判断を目的としたモデルの作成は、「ボンネットや地吹雪の判別に不向きな遠方の道路構造物より上空の写り込みをカットした画角」でトリミングした画像を用いることが有効だと思われる。一方、吹雪発生の検知を目的としたモデルの作成は、色調がカラーで、トリミングしない画像を用いることが有効だと思われる。

本研究では、AI 技術を用いることで車載カメラ画像 から吹雪の検知、視程障害の程度の判別が概ね可能で あることが分かった。一方でモデルが学習していない エリアの画像では判別精度が低くなる問題があること が分かった。適用エリアを拡大したモデルを構築する には、適用したい道路の吹雪画像と視程データを基に した教師データを作成する必要がある。しかしながら、 このようなデータを取得するためには、視程障害移動 観測車による繰り返しの調査が必要となるが、モデル 構築を目的としてこのような調査を行うことは本末転 倒である。今後、吹雪画像判別モデルの適用エリア拡 大のためには、敵対性生成ネットワーク技術を用いた 擬似的な吹雪画像の作成など、教師データの拡充手法 を検討していくことが必要である。

参考文献

- 1) 独立行政法人 土木研究所 寒地土木研究所:道路吹雪 対策マニュアル(平成23年度改訂版)
- 2) 岡谷貴之:深層学習、ISBN-13:978-4061529021、2018.
- Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M.

Bernstein, A. C. Berg, L. Fei-Fei: ImageNet large scale visual recognition challenge, *International Journal of Computer Vision*, 115(3), 211-252, 2015.

- Robert, R., G. Giancontieri, L. Inzerillo, G. Di Mino: Towards low-cost pavement condition health monitoring and analysis using deep learning, *Applied Sciences*, 10, 319, app10010319, pp.1-22, 2020.
- 5) 丸山記美雄、大浦正樹、木村孝司:深層学習によるポットホール判別技術に関する基礎的研究、第61回(平成29年度)北海度開発技術研究発表会、2018.
- 原祐輔、内山彰、梅津高朗、東野輝夫:車載カメラを 用いた深層学習による人流推定法の提案、情報処理学 会研究報告、Vol.2018-ITS-72、No.3、2018.
- 7) 張 ハンウェイ、佐藤祐大、川崎洋、峰恒憲、小野晋 太郎:ドライブレコーダーデータから深層学習により 推定した天候情報を用いた急ブレーキ推定、生産研究、 73(2)、131-52、2021.
- 8) M.N. Khan, M.M. Ahmed: Development of a novel convolutional neural network architecture named RoadweatherNet for Trajectory-level weather detection using SHRP2 naturalistic driving data, *Transportation Research Record*, 2021 in press.
- 9) 永田泰浩、萩原亮、金田安弘、川村文芳、田宮啓士:吹 雪多発路線における CCTV カメラの画像を利用した視 界情報提供システムの検証、土木計画学・論文集 Vol. 26、No.5、2009.
- 10) 公益社団法人日本雪氷学会編:新版 雪氷事典、古今 書院、2014.
- 松沢勝、竹内政夫:気象条件から視程を推定する手法の研究、雪氷、64(1)、77-85、2020.
- 12) 加治屋安彦、松澤 勝、鈴木武彦、丹治和博、永田泰浩: 降雪・吹雪による視程障害条件下のドライバーの運転 挙動に関する一考察、寒地技術論文・報告集、Vol.20、 325-331、2004.
- 福沢義文:車の雪煙による視程障害と側方散乱方式車載
 型視程計の開発、雪氷、55(1)、29-38、1993.

DETECTION TECHNIQUES FOR POOR VISIBILITY IN SNOW BY IMAGE ANALYSIS OF IN-VEHICLE CAMERA

Research Period : FY2018-2020 Research Team : Cold-Region Road Engineering Research Group (Snow and Ice) Author : TAKAHASHI Joji YOROZU Naoki KANEKO Manabu KOKUBU tetsuya OKOBO Koji TAKECHI Hirotaka SAKURAI Toshimitsu

Abstract : In order to efficiently extract specific locations of national highways where require countermeasures for cost-effectiveness development, we studied a method to determine the occurrence of and the severe levels of snowstorms from images of the in-vehicle camera using the convolutional neural network (CNN), typical techniques of artificial intelligence. As a result of several configurations constructed the discrimination models for the visibility, color images trimmed with specific angle of the view can determine the occurrence of poor visibility in snow. We also found that the image should not cropped at a specific angle of view can determine the levels of visibility in snow. Finally, this study suggested that the CNN model is useful for determine the occurrence and the severe levels of poor visibility in snow from the in-vehicle images.

Key words : convolutional neural network, poor visibility in snow, snowstorm countermeasures, natural disasters