4. 4 地震に伴う地すべり土塊の強度変化特性に関する研究

研究予算:運営費交付金(治水勘定) 研究期間:平17~平19 担当チーム:雪崩・地すべり研究センター 研究担当者:花岡正明、丸山清輝、ハスバートル、

鈴木聡樹

【要旨】

激甚な揺れを観測した中越地震では、地すべりの急激な滑動によりアクセス道路及びライフラインの寸断 や河道閉塞が多発した。このため、地すべり災害は、長期にわたり集落を孤立化させるなど中山間地に深刻 な影響をもたらした。そこで、当センターではH17年度より中越地震を事例として、地形・地質の調査・分析 及び地震時の地すべり土塊のせん断強度特性などをもとに、地震による地すべり機構、地すべりの発生条件 などについて検討し、地震による地すべりの発生危険度評価方法を作成した。 キーワード:地震、地すべり、発生条件、リングせん断試験、危険度評価法

1.はじめに

激志な揺れを観測した中越地震では、地すべりの急 激な滑動によりアクセス道路及びライフラインの寸断 や河道閉塞が多発した。このため、地すべり災害は、 長期にわたり集落を孤立化させるなど中山間地に深刻 な影響をもたらした。しかしながら、地震により滑動 した地すべりに関する既往の報告・研究はほとんどな く、また現在の地すべり対策の検討においても、地震 は外力として設定されていない。

本研究では、中越地震による地すべり災害を事例と して、地形・地質の調査・分析及び地震時の地すべり土 塊のせん断強度特性などをもとに、地震による地すべ り機構、地すべりの発生条件、地すべりの発生危険度 評価法について検討してきた^{1)~8)、15)}。

2. 研究目的

本研究では、①中越地震による地すべりの機構解明、 ②中越地震による地すべりの発生条件の抽出、③中越 地震による地すべりの危険度評価方法の提案を目的と し、これらを達成目標とした。

3. 研究方法

雪崩・地すべり研究センターでは、地震時に滑動した 地すべりの特性を明らかにするため、芋川、朝日川及 び相川川流域で規模や移動量の大きな地すべりを抽出 し、図-1の研究フローに基づき、現地調査やすべり 面判定のためのボーリングコア観察・地形解析・土質 試験など、総合的な研究を行ってきた。また、静的リ ングせん断試験機を改造した動的リングせん断試験に より、地震時の地すべり土塊の強度特性について検討 してきた。

図-1 研究フロー

表-1には、中越地震により移動した規模と移動距離が大きな地すべりを示す。この中からさらに規模、 移動距離、地質を考慮して塩谷神沢川、田麦山小高、 尼谷地の3箇所の地すべりを選定し、これらの特徴と 地すべり機構について検討した。

4. 新潟県中越地方の地形・地質

図-2には、新潟県中越地方の地形を示した。新潟 県中越地震の震源域は、北北東-南南西方向に延びる 東山丘陵および魚沼丘陵にまたがる。本地域は、"新 潟方向"⁹(図中の破線方向)と呼ばれる北北東~南 南西方向のリニアメントが明瞭で、断層や褶曲構造を 反映した地形となっている。

図-3は、東山丘陵における地質分布図⁹を示した

No.	名称	長(m)	幅 (m)	最大厚 (m)	移動 距離 (m)	斜面勾 配 (度)	移動方向	基盤岩	地質構造
1	塩谷神沢川	570	490	80	100	15.3	\$40E	砂岩泥岩互層	流れ盤
2	田麦山小高	350	270	20	50	17.0	\$70W	砂質泥岩	流れ盤
3	東竹沢	300	270	30	86	16. 2	N57W	砂質泥岩及び 砂岩泥岩互層	流れ盤
4	寺野	350	200	25	80	17. 1	\$26W	砂岩泥岩互層	流れ盤
5	小栗山	320	200	22	50	18. 1	N90W	砂岩泥岩互層	流れ盤
6	峠塩谷川	250	200	18	40	28.6	\$84E	砂岩泥岩互層	受け盤
7	尼谷地	250	160	18	40	15.6	\$30E-\$40E	塊状泥岩	流れ盤
8	峠塩谷川下流	300	120	17	44	26.7	\$86E	砂岩シルト岩互層	流れ盤
9	下塩谷	320	100	15	45	16.5	\$64E	砂岩泥岩互層	流れ盤
10	下十二平	210	130	24	25	15.8	N9OW	砂質泥岩	流れ盤

表-1 中越地震により滑動した主な地すべり

L136 40
 L139 00
 L139 00

図-2 新潟県中越地方の地形

ものである。東山丘陵には、新第三紀中新世から第四 紀更新世にわたる褶曲した地層が分布している。地層 は概ね北北東-南南西の走向を持ち、北北東-南南西 方向の褶曲軸が約1km間隔で配列する。第三紀層は主 に泥岩(シルト岩)、泥岩・砂岩互層、砂岩からなる。 第四紀更新世の魚沼層は主に、半固結のシルト、砂及 び礫などから構成されている。

5. 代表的な地すべりにおける地すべり挙動、
 地質・地形特性

5.1 塩谷神沢川地すべり

塩谷神沢川地すべりは、中越地震により滑動 した地すべりの中で、規模及び移動距離が最大 である。本地すべりは、本震震央から北東方向 に約3km離れた小千谷市塩谷地内に位置し、移 動土砂量がおよそ750万㎡と際立って大きい。

図-4には、塩谷神沢川地すべりの平面図を 示した。本地すべりは南、北及び西方向を尾根 に囲まれている。地すべりの規模は、長さ約570 m、幅約490m、深さ最大約80mと推定される。

図-3 東山丘陵における地質分布図

5.1.1 地すべりの挙動

図-5は、本地すべりの地震後の斜め写真を示した。 地震前の地形は、すり鉢状の尾根に囲まれた凸状の緩 い斜面を呈しており、この斜面が移動した。移動方向 と移動量は、地震発生前後の空中写真及び地形図など により計測した。その結果、水平移動量は斜面上部で は最大で約100m、中間部や末端部では約40~60mと推 定される。また、地すべりの移動方向は、滑動した斜 面上にあった養鯉池や水田などの状況から概ねS40° E方向と推定される。本地すべりブロックの上部西側の 滑落崖は、既存の地すべり地形を切って形成されてい る。また、今回滑動した地すべりの移動方向は、既存 の地すべり地形から推定される移動方向より若干南寄 りである。地形的には、本地すべりは既存地すべり地

図-4 塩谷神沢川地すべりの平面図(地震後)¹⁰⁾

図-5 塩谷神沢川地すべりの地震後の斜め写真 形内で発生した地すべりである。

5.1.2 地すべりの地質とすべり面

図-6は、本地すべりの主測線縦断面図を示したも のである。地すべり斜面の基岩は、主に新第三紀鮮新 世の川口層であり、泥岩優勢の砂岩・泥岩互層から構 成される。ボーリングコア観察では泥岩と破砕泥岩の った。移動した主な地すべりの現地調査及びコア観察 などの結果によると、地震により移動した地すべりの すべり面は明瞭なものは少なかった。また、塩谷神沢 川地すべりは、基岩内に新たなすべり面を形成したも のと考えられる。

表2	現地調査を実施し	、た地すべり	の特徴
· · · · ·			

		地すべり名	塩谷神沢川	田麦山小高	尼谷地	
	選定理由		中越地震で発生した地す べりで規模、移動距離が 最大の地すべり	規模、移動距離が最大級で、再滑 動・非再滑動斜面が隣接する地す べり	地すべり防止区域の地す べりであり、再滑動型地す べりの典型	
ſ		斜面勾配	15~20°	15~20°	15~20°	
	地	縦断面形状	緩やかな凸状	緩やかな凸状	緩やかな凸状	
	震前地	横断面形状	緩やかな凸状	滑落崖、頭部緩斜面、 陥没帯	緩やかな凸状	
	形	主な地すべり地形	滑落崖、頭部緩斜面、 陥没帯	滑落崖、頭部緩斜面、 陥没帯	滑落崖、頭部緩斜面、河 川の蛇行、地すべりの分 化	
		基岩地質	川口層 砂岩·泥岩互層	白岩層 泥岩·砂質泥岩互層	荒谷層 塊状泥岩	
	地	移動層の地質	主に破砕泥岩	風化泥岩、破砕泥岩	崩積土、風化泥岩	
	質	構造	走向:不明 傾斜:不明、流れ盤	走向:N3°W-N45°W 傾斜:20-30°NW、流れ盤	走向:NNE-SSW 傾斜:25-45°SE、流れ盤	
		規模	W=450m, L=650m	W=270m, L=350m	W=150m, L=250m	
		最大すべり面深度	約80m	約15m	約18m	
	地	すべり面勾配	10~15°	10°	10~20°	
	すべりの	すべり面深度(既存す べり面深度との関係)	既存すべり面より深い	既存すべり面とほぼ同じ	既存すべり面とほぼ同じ、 もしくは浅い	
	;概要	主な移動方向(既存地 すべりとの関係)	既存地すべりと異なる 南東方向	既存地すべりとほぼ同じ 西から西南西方向	既存地すべりと同じ 南方向	
		斜面末端の開放性	南東方向(土留川右支 川)に開放	北西方向(相川川) 南西方向(相川川右支川)に開放	南方向(芋川右支川) 西方向に開放	
ſ		湧水	末端部	頭部、末端部	末端部	
	水	地表水		あり		
		池	地す	べり頭部にあり	地すべり頭部にあり	
ſ	そ	土地利用		水田		
	-					

境界付近に擦痕や鏡肌、破砕部などが認められ、ここ にすべり面が形成されたと推定される。

5.4 現地調査を実施した地すべりの特徴^{11),12)}

表-2は、現地調査を実施した代表的な3つの地す べりの特徴をまとめたものである。各地すべりに共通 する点として、15~20°程度の緩い斜面勾配、流れ盤、 凸型の縦断面形状、斜面勾配が全体対して末端が急で あることがある。また、表-1に示した10箇所の地す べりは、既存の地すべり地形内で発生したものが多か

6. 中越地震による地すべり機構の検討

地震による地すべりの発生では、地すべり土塊内に 間隙水圧が発生し、強度を低下させることが大きな原 因の一つであると言われている¹⁶⁾。また、中越地震で 発生した地すべりは、短時間で数十m移動した。そこ で、中越地震の際に地すべり斜面の土塊内で地震時に 生じたと推定される間隙水圧の上昇及びせん断強さの 低下現象を明らかにするための動的リングせん断試験 と、地すべりが大移動した機構を明らかにするための 変位速度を変えた静的リングせん断試験を実施し、中 越地震による地すべりの機構について検討した。

6.1 動的リングせん断試験

動的リングせん断試験は、当センターが所有してい る静的リングせん断試験機に、動的せん断応力載荷装 置と動的せん断時の供試体内間隙水圧計測装置を取り 付け、動的せん断時(せん断変位 50cm 程度まで)の間 隙水圧、せん断応力、せん断変位等の計測を実施した。

6.1.1 試料

試料を採取した地すべり地には、既存地すべり地形 内で滑動したものの中から地すべりの規模が大きく、 移動距離の大きなものを選定した。また、試料の採取 は、主に地すべり頭部及び側方部ですべり面と推定さ れ、試料が採取可能な位置で行った。

図-7には、採取した試料の粒度試験結果を砂質土 と粘質土に分けて示した。

6.1.2 試験方法

供試体の寸法は、外径 100mm、内径 60mm、高さ 20mm である。なお、粘質土の供試体は、試料に蒸留水を加 えた後、礫分を取り除くために 425 µm のフルイを通過 させスラリー化させ、予圧密装置で適度な含水比に圧 密し成形して作成した。また、砂質土の供試体は、試 料を炉乾燥した後せん断箱に入れ、二酸化炭素を通過 させた後、脱気水を入れ飽和させたものを圧密し作成 した。

この他、せん断試験では垂直応力を 300kPa(深度約 20m に相当)とし、動的せん断応力は間隙水圧を計測 するために非排水状態で 0.5Hz の正弦波で載荷し、供 試体を確実に破壊させるために徐々に増加させた。

6.1.3 試験結果

図-8は、砂分 (粒径 0.075~ 2mm の占める割 合)、粘土分(粒 径 0.005mm 未満の 占める割合)と間 隙水圧比(せん断 変位が生じる直前 の間隙水圧/垂直 応力)との関係を

図-8 砂分・粘土分と

間隙水圧比との関係

● 粘土分

示したものである。発生した間隙水圧は、砂分につい てはその増加とともに高くなる傾向があり、粘土分に ついてはその増加とともに低くなる傾向がある。この

1.00

ことから、砂分の 多い土では地震力 の作用により土中 の間隙水圧が発生 しやすいことが分 かる。

図-9には、砂分、粘土分と残留強さ/ピーク強さ

ピーク強さに対す /ピーク強さとの関係 る残留強さの割合は、砂分についてはその増加ととも に小さくなる傾向があり、粘土分についてはその増加 とともに大きくなる傾向がある。すなわち、せん断変 位に伴うせん断強さの低下量は、砂分の多い土では大 きく、粘土分の多い土では小さくなる傾向がある。

との関係を示した。図-9 砂分、粘土分と残留強さ

6.2静的リングせん断試験

静的リングせん断試験では、地すべりが大移動した 機構を明らかにするために、せん断速度とせん断強さ の関係について調べた。

6.2.1 試料

試料は、東竹沢及び尼谷地の各地すべりのすべり面 付近で採取した。

6.2.2 試験方法

供試体の寸法は、外径 150mm、内径 100mm、高さ 20m m である。また、供試体の作成方法は、動的リングせん断試験と同じであるが、砂質土については礫分を取り除くためと砂分を残すために 2000 µ m のフルイを通過させた試料を用いた。

せん断試験では垂直応力を 200kPa (深度約 13m に相 当)とし、せん断箱を排水状態にして、まずせん断速 度 0.02mm/min でひずみ制御のせん断試験を実施した。 せん断強さが残留強さになった後は、せん断速度を5 →0.02→50→0.02→500→0.02mm/min に変更し、せん 断強さとせん断速度との関係を求めた。

6.2.3 試験結果

図-10 せん断速度と

大きく低下して 残留強さとの関係 いる。移動速度が速くなった場合の残留強さの低下割 合は、東竹沢の砂質土より尼谷地の粘質土の方が大き くなっている。

6.3 中越地震による地すべり機構の考察

動的リングせん断試験結果からは、砂分の多い土で は地震力の作用により土のせん断強さを低下させる間 隙水圧が発生しやすいこと、せん断変位に伴うせん断 強さの低下量は、砂分の多い土では大きく、粘土分の 多い土では小さいことが分かった。また、静的リング せん断試験結果からは、残留強さがせん断速度が大き くなると低下することが分かった。

これらのことから、中越地震時には、砂質系の斜面 では地震力の作用により土中の間隙水圧が上昇し、せ ん断強さが低下したことにより地すべりが発生したこ とが推定される。また、地すべりの大移動(東竹沢: 移動量86m、尼谷地:移動量40m)については、地震 時に土のせん断強さの低下により発生した地すべり が、その後の移動速度の増大によりさらにせん断強さ が低下し、大移動したことが推定される。

7. 中越地震による地すべりの発生条件

芋川流域とその周辺の中越地震による地すべりの発 生状況は、地震前(1975、1976年撮影)と直後の空中 写真と地形データ(DEM)をもとに判読した。なお、 地震により発生した地すべりの判読では、表層崩壊や 土石流等で土砂移動したものを除くために、空中写真 で判読可能な規模のものを対象とした。判読された地 震による地すべりは96箇所であり、既存の地すべり地 形は1,050箇所であった。

7.1 地すべりの発生実態

図-11には、中越地震で発生した地すべりの発生場 所を示した。地震で発生した地すべり96ブロックの内、 64ブロック(67%)が既存地すべり地形内で発生している。

図-12は、既存地す べり地形の面積と地震 で移動した地すべりの 面積の分布を示したも のである。地震で発生 した地すべりの面積 は、既存地すべり地形 に比べて小さいことが

に比べて小さいことが 図-11 地すべり発生場所

図-12 地すべり地の面積 表-3には、地震で発生した地すべりの基岩の地質 と面積、ブロック数との関係を示した。地震により発 生した地すべりの基岩は、地震時移動面積/総地すべ り面積及び地震時移動ブロック数/総地ブロック数で

表-3 地震で発生した地すべりの

基岩地質と面積、ブロック数との関係

地層	基岩地質	地すべり総 面積(m)	地震時移動 <u>面積</u> 総地すべり 面積(%)	地すべりブ ロック数	地震時移動 <u>ブロック数</u> 総地すべりブ ロック数(%)
荒谷層	泥岩	355,310	2	32	9
川口層	砂岩·泥岩互層	553,528	3	25	10
白岩層	砂質泥岩	296,096	3	17	13
牛ヶ首層	泥岩	141,587	2	11	7
和南津層	砂岩	91,494	4	8	18
魚沼層	礫・砂・シルト	41,304	1	3	4
計		1.479.319		96	

は、砂岩が最も大きい。これらのことから、中越地震 時の地すべり発生率は、砂質基岩分布域で大きいこと が分かる。

図-13には、地すべり移動方向の地質構造と地すべ り発生ブロック数との関係を示したものである。初生 地すべり及び地すべり地形内で移動した地すべりは受 け盤で発生しているものが少なく、流れ盤と流れ盤・ 受け盤以外の地質構造で発生しているものが多い。

中越地震により発生した地すべりは、既存の地すべ り地形内で地すべり土塊が移動したものが67%に達す ることが分かった。そこで、既存の地すべり地形の勾 配、面積、侵食最大深、地表面の縦断的凸度に着目し、 これらと地すべり発生との関係を検討した。

図-14は、地すべり斜面下部における末端から遷急 線までの勾配(下端勾配とする)と地すべり発生率(地 すべり発生ブロック数/条件に該当した地すべりブロ ック数)との関係を示したものである。斜面末端部が

図-14 下端勾配と地すべり発生率

開放された地すべりでは地震時に末端部が地すべりを 起こし、それが斜面上部に波及していったことが推定 る。地すべり発生率は、下端勾配15度以上で上昇し始 め下端勾配の上昇ととも大きくなっており、下端勾配 と地震時の地すべり発生との関連性が分かった。

図-15 には、侵食最大深と地すべり率との関係を示 した。侵食最大深は、30mメッシュの接峰面図と地震 前地すべり地形データとの差分から算出したものであ る。侵食量の大きな斜面では、風化が進みせん断強さ も低下していることが推定される。地すべり発生率は

図-15 侵食最大深と地すべり発生率との関係 侵食最大深 50m以上で8%以上を示し、侵食最大深と 地震時の地すべり発生との関連性が分かる。

図-16は、縦断的凸度と地すべり発生率との関係を

示したものである。なお、縦断的凸度は、地すべり斜 面の下端を基準点にした、地すべり水平長さの中点の 比高/上端における比高で算出した。斜面の地表面形 状が凸になっている場合、地震により斜面に大きな加 速度が働くと考えられる。地すべり発生率は、必ずし も明瞭ではないが縦断的凸度0.6以上で10%前後を示 す。

7.3 中越地震による地すべりの発生条件

前節で述べた中越地すべりで発生した地すべりの実 態及び地形と地すべり発生との関係をもとに、中越地 震による地すべりの発生条件についてまとめると次の 通りである。

発生した地すべりは、①既存の地すべり地形内で地 すべり土塊が移動したものが約70%を占める、②既存 の地すべり地形に比べて面積の小さいものが多数発生 した(既存地すべり地形の一部で地すべりが発生した ものが多い)、③砂質基岩(砂岩・泥岩互層、砂質泥 岩)の分布域では相対的に規模の大きな地すべりが多 発している、④流れ盤と流れ盤・受け盤以外の地質構 造で発生している傾向が認められる。

また、地すべり発生と地形との関係では、①下端勾 配15度以上で地すべり発生率が上昇し始めている、② 侵食最大深50m以上で地すべりが発生している、③縦 断的凸度が0.6以上で地すべり発生率が大きくなって いる。

以上のことから、中越地震による地すべりの発生条件として、地質的条件としての地質、地質構造と、地形的条件としての地すべり地形の存在、下端勾配、侵食最大深、縦断的凸度を挙げることができる。

8. 中越地震で発生した地すべりの発生危険度評価方 法

8.1 斜面安定解析による危険度評価法の検討

斜面安定解析は震度法である(1)式を用い、地すべり を起こした45斜面103測線について実施した。

 $\Sigma \{c' l + (W \cos \alpha - KhW \sin \alpha - ul) \tan \phi' \}$

$$\Sigma \mathbb{W} (\sin \alpha + \operatorname{khcos} \alpha)$$

---- (1)

ここで、Fs:斜面安全率、c':粘着力、 1:各スライスのすべり面長、W:各スライスの重量、 Kh:水平震度、α:各スライスのすべり面勾配、 u:間隙水圧、φ':内部摩擦角、である。

なお、斜面安定解析では、土質強度定数は中越地震

での大規模地すべりで求められた値を参考にして c['] は深さの 1/10 から求め、 ϕ ['] =35 度、単位体積重量 γ_t =18kN/m³として検討した。

図-17には、斜面勾配と斜面安全率が1.0になる時の 水平震度(Kh_{1.0})との関係を示した。Kh_{1.0}は斜面勾配 が急になるほど小さくなる傾向がある。小山内ら (2007)⁹⁾は、芋川流域(本解析とほぼ同じ区域)の

中越地震時には 図-17 斜面勾配とKh_{1.0}との関係 解析した80%程度の地すべりが、斜面安全率1.0以下に なることが分かる。

Kh_{1.0}が大きい場合、地すべり発生のために相対的に 大きな加速度が必要になることを意味する。このこと から、斜面安定解析により相対的な地震による地すべ り発生危険度評価が可能であると考えられる。しかし ながら、地震で発生する地すべりは、既存地すべり地 形がそのまま移動するとは限らない。このため、斜面 安定解析を実施するための地震発生場所、地すべり範 囲、すべり面の位置などの予測が難しいことから、今 後さらに検討が必要である。

8.2 中越地震で発生した地すべりの発生条件を

もとにした危険度評価法の検討

本研究では、中越地震で発生した地すべりの約70% が既存の地すべり地形内で発生した地すべりであるこ とが分かった。このことから、地震による地すべりの 発生危険度評価方法の検討は、既存地すべり地形を評 価単位として実施した。なお、危険度評価の前提とし て以下の条件を設定した。

①既存の地形・地質図や地すべり分布図、空中写真 判読等を用いる簡便な手法とする。

②地震前の地すべり地形を対象に危険度を評価する。

また、危険度評価方法については、データ数が少な いことから危険度評価要因に対して配点し、その合計 得点で評価する方法の作成を試みた。

8.3 地すべりの発生危険度評価要因とその配点

表-4には、地すべりの発生危険度評価要因を示し

た。要因は地すべりの発生条件をもとに、地質につい ては地質と地質構造、地形については下端勾配、侵食 最大深、縦断的凸度とした。

表-5は、危険度評価要因の配点を示したものであ る。各要因は2~3区分し、各区分毎に配点した。な お、要因の中には、ある値を境にほとんど地すべりが 発生しない場合がある。このような場合には合計得点 を0点とした。

表-4 地すべりの発生危険度評価要因

要因		再滑動の状況		
地質	地質	砂岩・泥岩互層、砂質泥岩分布域で規模の大き な地すべり多発		
	地質構造	流れ盤、流れ盤・受け盤以外で地すべり多発		
	侵食最大深	50m以下の地すべり地では、ほとんど発生せず		
地形	縦断的凸度	0.6以上で地すべり多発		
	下端勾配	下端勾配35度以上で地すべり多発		

表-5 危険度評価要因の配点

— —		配 点				
	安 囚	2点	1点	O点		
地質	地質	砂質泥岩、 砂岩·泥岩互層	_	_		
	地質構造	流れ盤、流れ盤・ 受け盤以外	-	_		
地形	侵食最大深	90m以上	50 ~ 90m	50m以下の場合に は合計0点		
	縦断的凸度	0.8以上	0.6~0.8	0.6未満		
	下端勾配	30度以上	10~30度	10度未満の場合に は合計0点		

8.4 地すべりの発生危険度評価

図-18には、地震による地すべり発生危険度の評価 結果を示した。評価は、既存地すべり地形1,050箇所 の中でDEMデータの不足箇所を除いた741箇所を対象と した。地震で発生した地すべり箇所数は54箇所であり、 非発生地すべり箇所数は687箇所である。

地すべり発生率は危険度評価得点5から増大が始ま り、8点では12%になり、10点では43%に達している。 また、危険度のランクについては、地すべり発生率の 変曲点をもとに、地すべりの発生がほとんど認められ ない危険度評価得点0~4以下までをランク1、地す べりの発生率が10%前後の危険度評価得点5~8未満 までをランク2、地すべりの発生率が30%以上の危険 度評価得点9~10以下までをランク3とした。

表-6は、表-1に示した主な地すべりについての 危険度評価結果を示したものである。なお、田麦山小 高、小栗山、尼谷地の各地すべりについては、地震前 の地形データ(DEM)がなかったので示すことがで きなかった。危険度は、東竹沢、峠塩谷川、下塩谷が ランク2に、塩谷神沢川、寺野、峠塩谷下流、下十二 平がランク3に評価され、概ね妥当な結果が得られた と考える。

図-18 地震による地すべり発生危険度の評価結果 以上の結果、地 **表**-6 危険度評価結果

すべりの発生条件 から求めた要因を もとに、地震によ る地すべりの発生 危険度評価法を作 成した。

No.	地すべり名	危険度評価 得点	ランク
1	塩谷神沢川	9	3
2	東竹沢	7	2
3	寺野	9	3
4	峠塩谷川	7	2
5	峠塩谷川下流	9	3
6	下塩谷	5	2
7	下十二平	8	3

9. まとめ

本研究では、中越地震による地すべり災害を事例と して、地形・地質の調査・分析及び地震時の地すべり土 塊のせん断強度特性などをもとに、地震による地すべ り機構、地すべりの発生条件、地すべりの発生危険度 評価法について検討した。以下に、その結果を達成目 標毎に示す。

- (1)中越地震による地すべりの発生機構については、リングせん断試験結果から、中越地震時には砂質土の斜面では地震動の作用により土中の間隙水圧が上昇し、せん断強さが低下したことで地すべりが発生したことが推定された。また、地すべりの大移動については、地震時にせん断強さの低下により発生した地すべりが、その後移動速度が大きくなったことで、さらにせん断強さが大きく低下し、大移動を生じたことが推定される。
- (2) 中越地震により発生した地すべりは、地質、地質構造と、地すべり地形の存在、下端勾配、侵食最大深、

縦断的凸度が影響を及ぼしていると考えられた。

(3)中越地震による地すべりの危険度評価方法として、 地すべりの発生条件から危険度評価要因を設定し て配点を行い、その合計得点により簡便に評価する 方法を提案した。

10. 今後の課題

今後は、本研究成果をもとに、第三紀層地域におけ る地震に伴い発生する地すべりの危険箇所マップ作成 法の構築及び、モデル地域(新潟県上越地方)におけ る危険箇所マップ(試案)作成へと研究を発展させる 予定である。

最後に、本研究を進めるに際しては、国土交通省北 陸地方整備局湯沢砂防事務所及び新潟県に御支援を頂 いた。ここに記して感謝の意を表する。

参考文献

- 1)ハスバートルほか:地震による地すべりの滑動機構-2004 年新潟中越地震を例に-、日本地球惑星科学連合2006年 大会発表要旨、平成18年5月
- ハスバートル・花岡正明:新潟県中越地震における地すべり り土塊の滑動機構-田麦山小高地すべりを例に-、平成 18年度砂防学会研究発表会概要集、pp.486~487、平成18 年5月
- 3)ハスバートルほか:新潟県中越地震における地すべりの発 生機構の検討-塩谷神沢川地すべりを例に一、地すべり学 会新潟支部シンポジウム、平成18年5月
- 4)ハスバートルほか:2004 年新潟県中越地震における再滑動 型地すべりの特徴、第45回日本地すべり学会研究発表会 講演集、pp.379~382、平成18年8月
- 5)ハスバートルほか:地震に伴う再滑動した地すべりの挙動 及び機構、第45回日本地すべり学会研究発表会講演集、 pp.157~160、平成18年8月
- 6)ハスバートルほか:地震に伴う再滑動した地すべりの挙動 及び機構-2004年新潟県中越地震時の塩谷神沢川及び尼 谷地地すべりの挙動、Interpraevent Proceeding、平成18 年9月
- 7)木下篤彦ほか:2004 新潟県中越地震で発生した南池谷地すべり機構の検討、平成19年度砂防学会研究発表会概要集、 pp. 228~229、平成19年5月
- 8)村中亮太ほか:中越地震で発生した再滑動型地すべりに関する研究、第46回日本地すべり学会研究発表会講演集、 pp.83~86、平成19年8月
- 9)地質調査所:50,000分の1地質図「小千谷」、1996;50,000
 分の1地質図「長岡」、2001

- 10) 新潟県(2005): 災関地渓第 56-00-00-91 号 塩谷神沢川地区災害関連緊急地すべり対策事業調査委託報告書
- 11)新潟県:災関地渓 第0062-00-00-91号 田麦山小高地
 区災害関連緊急地すべり対策事業調査業務委託報告書
 (2005)
- 12)新潟県:平成16年度災害関連緊急地すべり対策事業
 (防止工事1号、尼谷地地区第1次地質調査作業委託報告書、2006
- 13)小山内信智ほか:既往崩壊事例から作成した地震時斜面 崩壊発生危険度評価手法の新潟県中越地震への適用、砂 防学会誌、Vol.59、№6、pp.60~65、2007 年
- 14)防災科学技術研究所:「山古志村周辺地すべり地形分図」、 2004
- 15) 花岡正明ほか: 2004年新潟県中越沖地震により再滑動した地すべりの特徴、土木技術資料、Vol.49、No.9、 pp. 26-31、2007
- 16) 佐々恭二ほか:平成16年新潟県中越地震により発生した 再活動地すべり地における高速地すべり発生・運動機構、
 - (社) 日本地すべり学会誌、Vol44、No.2, pp. 1-8、2007

A study on characteristics of shear strength changing of landslide mass induced by earthquake

Abstract

Triggered by the strong shaking of the Mid-Niigata Prefecture earthquake, abrupt sliding of landslides destroyed amount of roads and lifelines, and blocked rivers in many places. As a result, these landslide hazards isolated the villages in a longtime, brought serious influences to the life and environment of the hilly areas, around the Chuetsu region.

Under this situation, we started this study from 2005 fiscal year, conducted geomorphological and geological investigation of the cases of landslides induced by the Mid-Niigata Prefecture earthquake, and also carried out shearing strength test of the landslide mass. We had constructed a risk evaluation method of earthquake-induced landslide, on the basis of discussion of the sliding mechanism, occurring factors of earthquake-induced landslides.

Keywords: earthquake; landslide; causal factor, ring shear test; risk evaluation method