ISSN 0386-5878 土木研究所資料 第4426号

土木研究所資料

鋼床版 SFRC 舗装の環境作用を考慮した 耐久性に関する研究

令和4年9月

国立研究開発法人土木研究所 構造物メンテナンス研究センター 橋 梁 構 造 研 究 グ ル ー プ

Copyright © (2022) by P.W.R.I.

All rights reserved. No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the Chief Executive of P.W.R.I.

この報告書は、国立研究開発法人土木研究所理事長の承認を得て刊行し たものである。したがって、本報告書の全部又は一部の転載、複製は、国 立研究開発法人土木研究所理事長の文書による承認を得ずしてこれを行っ てはならない。

土木研究所資料 第4426号2022年9月

鋼床版 SFRC 舗装の環境作用を考慮した 耐久性に関する研究

構造物メンテナンス研究センター橋梁構造研究グループ

上盾	青研ダ	E員	上仙	靖
上厚	青研究	钓員	澤田	守
研	究	員	篠田	隆作

要 旨:

既設鋼床版の疲労損傷対策の1つである鋼繊維補強コンクリート(SFRC)舗装は、 鋼床版の局部応力の低減が図れるものの、実橋環境条件下における耐久性に関する検 討データは少ない。

本資料は、SFRC舗装に生じるひび割れや雨水等が、SFRC舗装や接着剤の耐久性に 及ぼす影響を把握することを目的として、小型試験体を用いた引張接着強度試験、浸 水負曲げ疲労試験および SFRC 舗装の施工から約 15 年経過した実橋の引張接着強度試 験やひび割れ調査の結果をとりまとめたものである。

キーワード:鋼床版,疲労亀裂, SFRC舗装,引張接着強度,疲労試験

1. は	じめに	•••••				1
1.1	研究のす	皆景・目的				1
1.2	既往研	究のレビュー				4
1.3	検討概要	要				7
2. 環	境負荷を	作用させた	接着剤の引張接着強度試験	矣		
2.1	試験概题	要				
	2.1.1	試験体の製	作			
	2.1.2	試験方法				
2.2	引張接着	着強度試験統	异			
	2.2.1	ケース1	(模擬貫通ひび割れ無し、	温水負荷28日・	168日) ·	
	2.2.2	ケース2	(模擬貫通ひび割れ有り,	温水負荷 168 日,	乾燥7日)	
	2.2.3	ケース3	(模擬貫通ひび割れ有り,	温水負荷 168 日,	乾燥7日,	温水負荷28日)
2.3	引張接続	着強度試験の)考察			
	2.3.1	温水負荷期	間の影響			46
	2.3.2	模擬貫通ひ	ひ割れの影響			47
	2.3.3	自然乾燥の	影響			
	2.3.4	ひび割れ注	入の影響			
2.4	圧縮強	度試験				
	2.4.1	試験体の加	I			51
	2.4.2	試験方法				
2.5	圧縮強	度試験の結果	Į			
	2.5.1	ケース1	(模擬貫通ひび割れ無し、	温水負荷28日・	168日) ・	
	2.5.2	ケース2	(模擬貫通ひび割れ有り,	温水負荷 168 日,	乾燥7日)	
	2.5.3	ケース3	(模擬貫通ひび割れ有り,	温水負荷 168 日,	乾燥7日,	温水負荷28日)
2.6	圧縮強	度試験を踏ま	ミえた引張接着強度試験の	考察		60
3. 浸	水負曲げ	疲労試験				68
3.1	試験概要	要				68
	3.1.1	試験体 …				68
	3.1.2	試験体の製	作			68
	3.1.3	試験方法				69
3.2	静的負日	曲げ試験結果	Į			74
3.3	浸水負日	曲げ疲労試験	結果			
3.4	疲労試調	険後の引張援	接着強度試験と試験結果			
4. 耐	久性を確	認するため	の実橋調査			96
4.1	調査対象	象橋梁				%

目

次

	4.1.1	国道 357号	・ 横浜ベイフ	リッジ	下層	(SFRC舗装供用から約1	6年経過)·	97
	4.1.2	国道50号	大平高架橋	上り線	(SFR	C舗装供用から約13年紹	3過)	99
	4.1.3	S橋(SF	RC舗装供用が	いら約15	年経過)			101
4.2	実橋の	引張接着強						103
	4.2.1	試験位置						103
	4.2.2	試験方法						107
	4.2.3	試験結果…						112
	4.2.4	考察						124
4.3	実橋の	路面ひび割り	れ調査					126
	4.3.1	調査位置						126
	4.3.2	調査結果…						127
5. ま	とめ …							····· 146
謝辞								149
参考文	献							150

1. はじめに

1.1 研究の背景・目的

1980年代以降,大型車交通量の多い路線を中心に,U型の縦リブ(以下,「Uリブ」という。)を使用した鋼床版橋で疲労亀裂(図-1.1.1)の事例が報告^{1.1)}されている。このような 損傷実態を踏まえて,平成16年から平成20年度まで,独立行政法人土木研究所では民間 企業3者と「鋼床版橋梁の疲労耐久性向上技術に関する共同研究」を実施した。この共同 研究では,既設鋼床版の疲労損傷対策として,既設のアスファルト舗装を剛性が高い鋼繊 維補強コンクリート(Steel Fiber Reinforced Concrete)(以下,「SFRC」という。)舗装(図-1.1.2) に置き換える工法を対象に,SFRC舗装の疲労耐久性に関する検討(小型試験体を用いた負 曲げ疲労試験,実大鋼床版試験体を用いた輪荷重走行試験),既設鋼床版とSFRC舗装を一 体化させるための接着剤の性能確認試験,SFRC 舗装表面に生じる引張ひずみに着目した FEM 解析による検討,実橋におけるひずみ低減効果に関する検討等が行われた。それらの 検討結果や既存の研究成果を踏まえて,「鋼床版橋梁の疲労耐久性向上技術に関する共同研 究(その2・3・4)報告書—SFRC舗装による既設鋼床版の補強に関する設計・施工マニ ュアル(案)一」^{1.2}(以下,「SFRC 舗装マニュアル」という。)が平成21年10月にとり まとめられている。

SFRC 補強工法は、鋼床版の上面に剛性の高い SFRC 舗装を敷設し、鋼床版と SFRC 舗装 の一体化を図ることにより、鋼床版に生じる疲労亀裂の主な原因と考えられる鋼床版デッ キプレート周辺の溶接部における局部変形を抑えるとともに局部応力を低減させる等、疲 労耐久性の向上を目的とした工法である。上記 SFRC 舗装マニュアル^{1.2)}の補強工法の構造 概要を図-1.1.2 に示す。

図-1.1.1 鋼床版の疲労亀裂の発生部位

SFRC 補強工法は、鋼床版デッキプレートの端部や SFRC 舗装の打継目にスタッドを施工 し、鋼床版デッキプレートにエポキシ系接着剤を塗布した状態で、主桁ウェブ等の負曲げ を受けひび割れが発生する可能性が高い箇所に補強材を敷設し、フレッシュコンクリート 状態の SFRC を打設し、鋼床版と SFRC 舗装の一体化を図るものである。SFRC 補強工法を 構成する材料は SFRC,接着剤、スタッド、補強材であり、主な役割を以下に示す^{1.2}。

1) SFRC

既設アスファルト舗装に置き換え、舗装としての役割を担うとともに、デッキプレート との一体化を図ることにより剛性を付与し、輪荷重載荷位置でのデッキプレート周辺溶接 部の局部変形・応力の軽減を図る。

2) 接着剤

鋼床版と SFRC 舗装の一体化を図ることを目的として, デッキプレート表面に塗布し, 打 込み後のコンクリートの硬化過程において両者を接合する。

3) スタッド

SFRC 舗装の打継目や舗装端部において,境界面への雨水の浸入による接着剤の劣化や乾燥収縮等による端部の反り上がりによる劣化を抑制することを目的として,打継目および舗装端部の近傍に設置する。

4) 補強材

車両走行による負曲げを受け、ひび割れが発生する可能性の高い主桁ウェブ直上において、ひび割れ発生後のSFRC舗装の一体性を保持し、耐久性を確保することを目的として、 耐食性を有する格子状の補強材を舗装内部に設置する。

SFRC 舗装は, SFRC 舗装マニュアル^{1.2)}を公表して以降,道路橋において施工実績を重ね ている。SFRC 舗装マニュアル^{1.2)}のとりまとめにあたっては,各種の試験や解析等による 検討を行っているものの,実橋環境条件下における長期的な耐久性については検討データ が少ない。SFRC 舗装は補強材を負曲げ域である中間支点上や主桁上に設置するものの,負 曲げ域ではひび割れ(橋軸方向,橋軸直角方向)が生じる可能性があるほか,乾燥収縮に よりひび割れ(橋軸直角方向)が生じる可能性もある。このひび割れから雨水が浸入する ことによって,鋼床版デッキプレートと SFRC 舗装間の接着剤の引張接着強度の低下等の可 能性が考えられる。

既往研究^{1.3),1.4)}では、2種類のエポキシ系接着剤を対象に、SFRC 舗装を敷設した実大鋼 床版試験体で輪荷重走行試験を行い、その後、屋外暴露や室内暴露を行った後に、引張接 着強度試験を実施し、引張接着強度の低下や破壊形態が SFRC 舗装の材料破壊から界面破壊 に移行する結果等が報告されている。また、既往研究^{1.5),1.6)}では、引張接着強度に影響を及 ぼす因子を明らかにすることを目的に、SFRC 舗装と既設鋼床版デッキプレートの接合部を 模擬した小型試験体に温水負荷を与えてその後の引張接着強度試験を実施し、温度変化、 水の浸入の影響により引張接着強度の低下や破壊形態が SFRC 舗装の材料破壊から界面破 壊に移行する結果等が報告されている。しかしながら,既往研究では貫通ひび割れが生じ た状態での温水負荷の影響,温水負荷状態から乾燥状態に移行した場合の影響,ひび割れ 注入による補修効果の影響等について検討されていないため,これらが接着剤の引張接着 強度に及ぼす影響やその強度低下の程度について明らかにする必要がある。なお,既往研 究の詳細については 1.2 既往研究のレビューに示す。

このような背景から,本研究は SFRC 舗装と既設鋼床版デッキプレート間の接着剤に着目 し、ひび割れが発生する可能性のある負曲げ域(主桁直上や中間支点上)を対象に、ひび 割れからの水の浸入が接着剤の耐久性に与える影響を把握することを目的としている。

1.2 既往研究のレビュー

1) 暴露した SFRC 舗装実大鋼床版試験体の引張接着強度

SFRC 舗装マニュアル^{1.2)}では,SFRC 舗装とデッキプレート間には2種類のエポキシ系接着剤を用いて検討がされている。それら2種類の接着剤毎に既往研究の概要を示す。

①エポキシ系接着剤 A^{1.3), 1.7)}

第4章で詳述するが、エポキシ系接着剤Aは国道357号の横浜ベイブリッジで使用され た接着剤である。既往研究^{1.7)}では、エポキシ系接着剤Aを用いて、SFRC舗装を接着した 実大鋼床版試験体に対して、輪荷重走行試験が実施されている。輪荷重走行試験は、主桁 ウェブ直上に幅員方向の負曲げが作用するように、ダブルタイヤを模擬した輪荷重150kN を200万回載荷している。このSFRC舗装実大鋼床版試験体の輪荷重走行試験直後と輪荷重 走行試験後に約7年間の屋外暴露を行った時点の引張接着強度試験を実施した結果が報告 されている^{1.3)}。引張接着強度試験は、輪荷重走行試験により生じたひび割れの位置、輪荷 重を載荷した直下の位置、輪荷重の非載荷位置の3箇所で実施している。輪荷重走行試験 後に約7年間の屋外暴露を行った時点の引張接着強度は、輪荷重走行試験直後の引張接着 強度と比較して、引張接着強度がひび割れ部で約96%、輪荷重載荷位置直下で約94%、非 載荷部で約60%低下しており、ひび割れ部や載荷位置での引張接着強度の低下が著しい結 果となっている。引張接着強度の低下理由は、日射による温度変化や走行試験時のひび割 れ及び既存コア抜き箇所からの水の浸入による接合部への継続的な環境作用が接合面の経 年的な強度低下に影響を与えた可能性が高いと考察されている。

②エポキシ系接着剤 B^{1.4), 1.8)}

第4章で詳述するが、エポキシ系接着剤Bは国道50号の大平高架橋で使用された接着剤である。既往研究^{1.8)}では、エポキシ系接着剤Bを用いて、SFRC舗装を接着した実大鋼床版試験体に対して、輪荷重走行試験が実施されている。輪荷重走行試験は輪荷重150kNを200万回載荷している。このSFRC舗装実大鋼床版試験体の輪荷重走行試験後、約2年間の屋外暴露した時点(製作から3年後)、その後約5年間室内で保管した時点(製作から8年後)、さらにその後約5年室内で保管した時点(製作から13年後)の引張接着強度試験を実施した結果が報告されている^{1.4)}。なお、室内での保管は、SFRC舗装実大鋼床版試験体の非載荷部のSFRC舗装部分を複数に切り出した状態で保管がされていた。試験結果はばらつきが大きいが平均値でみると、製作13年後の試験結果(試験時温度20℃、環境負荷無し:2.23N/mm²)は、輪荷重走行走行試験終了時(3.20N/mm²)から約30%、製作2年後(3.25N/mm²)から約31%、製作8年後(2.37N/mm²)から約6%低下していた。試験体は2年間屋外に暴露後、室内で約10年間保管していたため、日射や雨水の影響は比較的小さいと考えられるものの、室内の温度変化等の継続的な環境作用が接合部の強度に影響していると考察されている。

2) 実橋における引張接着強度

既往研究^{1.9)}では、首都高速道路において、SFRC 舗装の施工から約 10 年が経過した実橋 で、引張接着強度試験等の追跡調査を行った結果が報告されている。首都高速道路におけ る SFRC 舗装は、走行性や維持管理性を考慮した 2 層構造(基層 50mm が SFRC 舗装、表層 30mm がアスファルト舗装)であり、基層である SFRC 舗装の上に防水層が敷設されている ために、鋼床版デッキプレートと SFRC 舗装の接合面である接着剤に水が浸透する可能性は 低いと考えられる。

SFRC 舗装マニュアル^{1.2)}では引張接着強度の良否の目安として,1.0N/mm²以上であるこ とが示されている。首都高速道路の試験結果では19箇所中16箇所では1.0N/mm²以上であ ったが,3箇所では1.0N/mm²を満足しない結果が報告されている。この満足しない箇所の 1つは,施工目地部でSFRC 舗装施工時のデッキプレートの研掃不足により既設アスファル トやさびが残存していたために,デッキプレートの界面破壊が生じたと考察されている。 また,施工目地部の引張接着強度が低い傾向は,材料の経年劣化ではなく施工時の素地調 整不足と考察されており,引張接着強度には問題がないと述べられている。

一方で、国道での採用実績が多い既設アスファルト舗装の全層を SFRC 舗装に置き換える 1 層構造について、実橋での引張接着強度試験の公表されている事例は確認できなかった。 なお、防水層が設けられている 2 層構造の SFRC 舗装よりも 1 層構造の SFRC 舗装の方が、 舗装内への水の浸入の観点では環境条件が厳しいと考えられる。

3)環境負荷を作用させた引張接着強度

既往研究^{1.5})では, SFRC 舗装と既設鋼床版デッキプレート間の接着剤の耐久性に関して, 温度変化, ひび割れからの水の浸入等の環境負荷による影響を把握することを目的に, SFRC 舗装と鋼床版を模擬した小型試験体による劣化促進試験の結果が報告されている。試験結 果については,環境負荷条件や接着剤の種類により強度の差異が見られるが,試験時温度 50℃は 20℃や-10℃での試験と比較して,引張接着強度が小さくなる傾向がみられたと報告 されている。

また,既往研究^{1.0}では,SFRC 舗装と鋼床版を模擬した小型試験体に対して,温水負荷 を 14 日~350 日の期間を与えた後に引張接着強度試験を実施し,温水負荷期間が引張接着 強度や破壊形態に与える影響について報告されている。引張接着強度は,温水負荷期間が 28 日の場合には接着剤の強度が増加する傾向となり,また,28 日より長期間の温水負荷を 行った場合には,引張接着強度の低下の傾向が見られたが,さらに一定期間が経過すれば 引張接着強度は横ばい状態となる結果が報告されている。また,破壊形態について,温水 負荷期間が 28 日程度までは材料破壊がほとんどを占めていたが,温水負荷期間が長くなる に従って界面破壊がほとんどを占めるようになったり,温水負荷期間による破壊形態の変 化が報告されている。

以上の既往研究から, SFRC 舗装と鋼床版を模擬した小型試験体に対して温水負荷を与え

た後に引張接着強度試験を行った結果,試験時温度は 50℃が厳しい条件であること,温水 負荷を与える期間については SFRC 舗装マニュアル^{1.2)}に規定されている 28 日間の場合に引 張接着強度が向上するものの,168 日の場合には破壊形態に変化(界面破壊の割合の増加) が生じることが確認された。

既往の室内試験から上記の知見は得られているものの,室内試験での環境負荷条件と, 実際の環境作用との関係についても,必ずしも明確でないのが現状であり,データを蓄積 していく必要があると考えられる。

4) 負曲げ疲労試験

鋼床版 SFRC 舗装について, 主桁や橋脚の中間支点上の負曲げ域においてひび割れが発生 すれば SFRC 舗装等の耐久性が低下するため, 既往の研究において, SFRC 舗装実大鋼床版 試験体を用いた輪荷重走行試験での疲労試験^{1,2),1,10)}や, 鋼床版を模擬した小型試験体による 疲労試験^{1,11),1,12)} が実施されている。

SFRC 舗装実大鋼床版試験体の疲労試験及び小型試験体による負曲げ試験では,疲労挙動 に着目し,疲労試験後の SFRC 舗装のひび割れ発生状況や引張接着強度を確認^{1.2,1.11}したも のや,補強材 (CFRP グリッド筋)の有無が SFRC 舗装の疲労耐久性に及ぼす影響を確認^{1.10,} ^{1.12}したものがある。ただし,既往研究において,疲労試験後のひび割れの発生状況は確認 されているものの,ひび割れの進展性状について詳細には必ずしも確認されていない。

以上より,既往研究では考慮していない条件,例えば貫通ひび割れが生じた状態での温 水負荷の影響,温水負荷状態から乾燥状態に移行した場合の影響,ひび割れ注入による補 修効果の影響等に着目し,より実橋に近い環境負荷を作用させた接着剤の引張接着強度試 験を行い,引張接着強度に影響を与える要因を把握する必要がある。

また、車両の輪荷重を想定し、SFRC舗装の負曲げ域に生じるひび割れの進展性状等の把握やひび割れの進展に伴い水が浸入することによる引張接着強度の影響について、浸水負曲げ疲労試験によりその影響を把握する必要がある。

さらに、既往研究において、首都高速道路の2層構造のSFRC舗装(アスファルト舗装+ SFRC舗装)に関する調査を行った事例はあるが、1層構造のSFRC舗装に関する調査は確 認できなかった。このため、1層構造のSFRC舗装を採用した実橋での耐久性を確認するた めに、供用中の橋梁で引張接着強度試験およびひび割れ調査を行い、実橋の耐久性の実態 を把握する必要がある。

6

1.3 検討概要

本研究の検討概要を以下に示す。また、本資料の構成を図-1.3.1に示す。

1)環境負荷を作用させた接着剤の引張接着強度試験(2章)

鋼床版デッキプレートと SFRC 舗装の接合部における接着剤の耐久性について, SFRC 舗 装と鋼床版デッキプレートを模擬した小型試験体を用いて,各種の条件で環境負荷を作用 させた後に引張接着強度試験を実施し,引張接着強度に影響を及ぼす要因とその強度変化 の程度を把握した。試験のパラメータとしては,温水負荷期間,模擬貫通ひび割れの有無, 温水負荷を考慮した後の自然乾燥期間,ひび割れ注入による補修の4項目で試験を行った。 なお,SFRC 舗装におけるひび割れの進展性状等の把握については3章で扱い,2章では模 擬貫通ひび割れを与えた場合やそのひび割れにエポキシ系のひび割れ注入材を施工して補 修した試験体に対して,荷重は作用させずに温水負荷を与えた後の引張接着強度試験を実 施している。

2) 浸水負曲げ疲労試験(3章)

SFRC舗装の負曲げ域に生じるひび割れの進展性状,ひび割れの進展に伴い水が浸入する ことによる引張接着強度の影響について把握することを目的に,小型試験体を用いて静的 負曲げ試験,浸水負曲げ疲労試験および浸水負曲げ疲労試験後の引張接着強度試験を行っ た。

3) 耐久性を確認するための実橋調査(4章)

SFRC 舗装の施工から約 15 年が経過した実橋における引張接着強度とひび割れ等の状況 を把握することを目的として,SFRC 補強工法に用いる接着剤の引張接着強度試験および SFRC 舗装路面のひび割れ調査を行った。

図-1.3.1 本資料の構成

2. 環境負荷を作用させた接着剤の引張接着強度試験

本章では,鋼床版デッキプレートと SFRC 舗装間の接着剤の引張接着強度に影響を与える 要因把握を目的に,SFRC 舗装と鋼床版を模擬した小型試験体に各種の条件で環境負荷を作 用させた後に引張接着強度試験を行うほか,圧縮強度試験を行った。試験は,模擬貫通ひ び割れの有無,温水負荷期間,温水負荷を考慮した後の自然乾燥期間,ひび割れ注入によ る補修の4項目を主なパラメータとして試験を行い,その影響を把握した。

2.1 試験概要

2.1.1 試験体の製作

(1) 一般

小型試験体は鋼板 (SS400) 上に接着剤を塗布し,補強材として鉄筋格子 (異形鉄筋 D10) を配置したうえで SFRC 舗装を打設して製作した。小型試験体の平面図および断面図を図 -2.1.1 に示す。鋼板厚は既設鋼床版の一般的な厚さと同様の 12mm とし,SFRC 舗装厚は SFRC 舗装マニュアル^{2.1}に基づき 75mm と設定した。

(2) 材料

材料は、SFRC 舗装マニュアル^{2.1)}に基づき設定した。表-2.1.1 にコンクリート材料の規格,表-2.1.2 に鋼繊維の規格,表-2.1.3 に接着剤の仕様,表-2.1.4 に SFRC の配合を示す。 コンクリート材料のセメントは早強セメントを使用した。小型試験体は補強材が有るもの と無いものを製作し、本章では補強材を設置していない試験体を用いた。なお、3 章では補 強材を設置した試験体を用いている。補強材は鉄筋格子(異形鉄筋 D10)を使用した。接着 剤は鋼床版と SFRC 舗装の接着として実橋での使用実績のあるエポキシ系接着剤(エポキシ 系接着剤 B)を使用した。鋼板は 12mm 厚の SS400 材を用いた。

使用する SFRC の配合は表-2.1.4 を目安とし,設計基準強度は 29.4N/mm²(材齢 3 日), 最大粗骨材寸法 13mm, スランプ: 6.5±1.5cm を目標とし配合設計を行った。実施確認後の 鋼繊維補強早強膨張コンクリートの配合およびコンクリートモービル車使用材料による現 場配合を表-2.1.5 に示す。表-2.1.5 による配合設計の品質確認試験の結果を表-2.1.6 に示 す。スランプの目標値は, SFRC 舗装マニュアル ^{2.1)}では施工実績や鋼繊維補強コンクリー ト設計施工マニュアル ^{2.2)}を参考に 6.5cm±1.5cm を標準とした。圧縮強度の目標値は,材齢 3 日で 29.4N/mm²と設定した。

材料の種類		規格				
1) セメント	$JIS \to 5210$	ポルトランドセメント	早強セメント			
2) 水	JIS A 5308 附属書9	レディーミクストコンクリートの練混ぜ に用いる水				
3) 骨材	JIS A 5308 附属書1	レディーミクストコンクリート用骨材				
4) 混和剤	JIS A 6204	コンクリート用化学混和剤				

表-2.1.1 コンクリート材料の規格^{2.1)}

表-2.1.2 鋼繊維の規格^{2.1)}

材	質	JIS G 3532 に適合した鉄線
形	状	両端フック型
-+ ×	直径	0.6mm
、」 伝	長さ	30mm
引 張	強 度	600N/mm ² 以上

項		目	主	剤	硬	化	剤		
主	成	分	エポキ	シ樹脂	脂肪族	ポリ	アミン		
外		観	白色ペー	白色ペースト状 青色液状					
混	合	比	主剤:硬化剤=5:1 (質量比)						
硬化	と物と	上重	1.40 ± 0.20 (JIS K 7172)						
圧;	縮 強	さ	50N/mm ² 以上(JIS K 7181)						
圧縮	弾性	係数	1.0×10 ³ N/mm ² 以上(JIS K 7181)						
曲げ強さ			35N/mm ² 以上(JIS K 7171)						
引引 接	 長せん 着 強	い断	10N/i	mm ² 以上	(JIS K	6850)			

表-2.1.3 エポキシ系接着剤 B の仕様

表-2.1.4 SFRC の配合^{2.1)}

粗骨材の 水結合材比 細情		細骨材素 鋼繊維		日油	日栖	単位量(kg/m ³)					高性能AE	
最大寸法	W/(C+EX)	而可可平 (s/a)	_{劉枫稚} 混入量	日伝 スランプ	3標 日標 ランプ 空気量		セメント	膨張材	細骨材	粗骨材	減水剤 ((C+EX)×%)	
(mm)	(%)	(%)	(kg/m^3)	(cm)	(%)	W	С	EX	s	G	Ad	
13	43.0	57.9	120	6.5 ± 1.5	$5.0{\pm}1.5$	175	387	20	956	700	1.6	

注1)単位水量には高性能AE減水剤を含む

注2)目標スランプおよび目標空気量は、鋼繊維混入後の値

	如母北县十十计	ナの社へ村山	4m		古 州 绐 A E						
	租 肖 材 取 入 寸 法 Gmax (mm)	水の結合材比 W/B (%)	##肎材 举 s/a (%)	水 W] セメント C	B 膨張材 EX	細骨材 S G		鋼繊維 混入量 SF	高性能AE 減衰剤 SP(B×%)	
現場配合 (CM)	13.0	43.0	57.9	175	387	20	949	725	725	1.6	
目安配合	13.0	43.0	57.9	175	387	20	956	700	700	1.6	

表-2.1.5 鋼繊維補強早強膨張コンクリート配合(コンクリートモービル車使用材料による計画配合)

表-2.1.6 品質確認試験の結果

百日	口博店	試	試験値				
山田	日惊胆	現場配合(CM)	目安配合(確認)	武职力法			
スランプ	$6.5\pm1.5\mathrm{cm}$	5.0cm	5.0cm	JIS A 1101			
压縮強度 (材齢3日)	29.4N/mm ²	35.2N/mm ²	35.7N/mm ²	JIS A 1108%			

※材齢1日までは封緘養生とし、材齢1日で脱型後は標準養生とする。

(3) 製作方法

試験体の製作方法を以下に示す。

- ①使用する接着剤,鋼板,型枠,道具類を温度20℃,湿度60%に保った恒温室で1日程 度養生した。
- ②鋼板の接着面に対して、ショットブラスト(投射密度 150kg/m²)でケレンを実施する。 ケレン後は表面の鉄粉等の汚れをふき取った(写真-2.1.1)。
- ③ケレンした鋼板に SFRC 打設用の型枠を設置した(写真-2.1.2)。なお, SFRC 打設時 に,接着剤が型枠と鋼板の隙間から染み出ないように,型枠の内側側面全体に養生テ ープを設置する等して配慮した。
- ④所定の割合で混合した接着剤を、ブラスト後ただちにケレンした鋼板面上に所定量(1 L/m²) 垂らし、へら等で膜厚が均一になるように塗布した上で、30分間静置した(写 真-2.1.3)。
- ⑤コンクリートモービル車から配合した SFRC を練り落とし(写真-2.1.4),スランプ試験による品質の確認を行うとともに、圧縮強度を確認するための試験体を製作した(写真-2.1.5)。
- ⑥接着剤の混合後 30 分静置した時点で SFRC を打設した(写真-2.1.6)。
- ⑦SFRC 舗装を半分の高さまで打設し格子鉄筋(D10)を設置し(写真-2.1.7),振動機を 用いて 10 秒程度振動を与え締め固めた(写真-2.1.8)。

⑧養生シートで覆い,温度 20℃,湿度 60%に保った恒温室で養生を行った(写真-2.1.9)。
⑨打設から 24 時間後に脱型し(写真-2.1.10),引き続き恒温室で条件を変えずに 28 日

間(打設日を含む)養生した。

写真-2.1.2 型枠設置・養生(③)

写真-2.1.3 接着剤塗布(④)

写真-2.1.4 SFRC 練り落とし状況(⑤)

写真-2.1.5 SFRC 試験状況(⑤)

写真-2.1.6 SFRC 打設状況(⑥)

写真-2.1.7 SFRC 試験状況 (⑦)

写真-2.1.8 振動機による施工(⑦)

写真-2.1.9 養生状況(⑧)

写真-2.1.10 型枠の脱型状況(⑨)

2.1.2 試験方法

(1) 試験概要と試験ケース

試験は2.1.1で製作した小型試験体に対して、模擬貫通ひび割れの有無、温水負荷期間, 温水負荷を考慮した後の自然乾燥期間,ひび割れ注入が引張接着強度に与える影響を確認 するために、小型試験体に荷重は与えずに温水負荷のみを作用させた引張接着強度試験(試 験時温度50℃)を実施した。小型試験体3体を用いて、各種の条件で環境負荷を作用させ た後に引張接着強度試験を合計27回行う。各試験体の条件、作用させる環境負荷及び引 張接着強度試験を実施するステップを表-2.1.7に、各試験体の詳細な試験フローを図 -2.1.2に示す。なお、小型試験体は2017年3月に製作し、約3年8カ月室内保管した状態から 試験を開始しており、試験時にSFRC舗装の水和反応は完了していると考えられる。

温水負荷50℃については、SFRC舗装マニュアル^{2.1)}のせん断強度試験における環境負荷条件(50℃の水中に27日間浸漬した後,1日気中で乾燥)を参考に設定した。また、試験時温度について、既往研究^{2.4)}では-10℃、20℃、50℃の試験時温度で引張接着強度試験を行っており、温度が高い場合に引張接着強度が小さくなる傾向がみられたため、試験時温度は50℃に設定した。なお、50℃は都市内高速道路のSFRC舗装内部(デッキ面から10mm上位置)の計測結果^{2.1})は概ね一致している。

ケース	1	2	3
試験目的	初期状態の把握 浸水及び温水期間の 影響の把握	浸水及び温水期間の影響 の把握	ひび割れ注入の影響の把 握
STEP0 ひび割れ	無し	カッターで模擬	カッターで模擬
STEP0 コア抜き	無し	♦100の切り込み	φ100の切り込み
STEP1	初期 引張接着強度試験 3箇所※	温水 28 日 気中1日乾燥 引張接着強度試験 3 箇所	温水 168 日 気中1日乾燥 引張接着強度試験 3箇所
STEP2	温水 28 日後 気中1日乾燥 引張接着強度試験 3箇所※	温水 168 日 気中1日乾燥 引張接着強度試験 3箇所	自然乾燥(7日程度) 引張接着強度試験 3箇所 試験後にひび割れ注入
STEP3	温水 168 日後 気中1日乾燥 引張接着強度試験 3箇所※	自然乾燥(7日程度) 引張接着強度試験 3箇所	温水 28 日 気中1日乾燥 引張接着強度試験 3箇所※

表-2.1.7 試験ケース詳細

※ケース1及びケース3の STEP3 は引張接着強度試験の直前にそれぞれコア切削を行う。

図-2.1.2 各供試体の詳細なフロー

ケース1の環境負荷と小型試験体加工の条件と試験のSTEPの関係を図-2.1.3に示す。ケ ース1は、初期状態の引張接着強度の把握と、小型試験体にひび割れが生じていない状態で 温水負荷を作用した場合の引張接着強度の把握のために実施した。STEP1は、温水負荷実施 前の小型試験体を対象に、50℃の恒温室内で引張接着強度試験を行った。STEP2は、保温水 槽により28日間の50℃の温水を負荷させた後、気中で1日乾燥させ、50℃の恒温室内で引張 接着強度試験を行った。STEP3は、温水負荷期間の影響を把握するため、STEP2の試験後に、 保温水槽により168日間の50℃の温水を負荷させた後、気中で1日乾燥させ、50℃の恒温室 内で引張接着強度試験を行った。

図-2.1.3 ケース1の環境負荷と小型試験体加工の条件

ケース2の環境負荷と小型試験体加工の条件と試験のSTEPの関係を図-2.1.4に示す。ケ ース2は、模擬貫通ひび割れから接着剤に水分が浸透した場合の影響と、模擬貫通ひび割れ から浸透した水分が乾燥した後の影響を把握するために実施した。なお、小型試験体は、 温水負荷を与える前に、模擬貫通ひび割れのほかにコア切削を行うことにより、接着剤へ の水の浸入の影響が大きくなる条件とした。STEP1は、保温水槽により28日間の50℃の温水 を負荷させた後、気中で1日乾燥させ、50℃の恒温室内で引張接着強度試験を行う。STEP2 は、STEP1で試験を行った後、保温水槽により168日間の50℃の温水を負荷させた後、気中 で1日乾燥させ、50℃の恒温室内で引張接着強度試験を行った。STEP3は、温水負荷後の乾 燥期間の影響を把握するため、STEP2で試験を行った後の小型試験体を、気中で7日間自然 乾燥させた後、50℃の恒温室内で引張接着強度試験を行った。

図-2.1.4 ケース2の環境負荷と小型試験体加工の条件

ケース3の環境負荷と小型試験体加工の条件と試験のSTEPの関係を図-2.1.5に示す。ケ ース3は、ひび割れ注入材を施工した場合の補修効果の影響を把握するために実施した。な お、ケース2と同様、小型試験体は模擬貫通ひび割れのほかコア切削を行い、接着剤への水 の浸入の影響が大きくなる条件とした。STEP1は、保温水槽により168日間の50℃の温水を 負荷させた後、気中で1日乾燥させ、50℃の恒温室内で引張接着強度試験を行った。STEP2 は、STEP1で試験を行った後の小型試験体を気中で7日間自然乾燥させた後、50℃の恒温室 内で引張接着強度試験を行った。STEP3は、STEP2で試験を行った後の小型試験体に対して、 ひび割れ注入材による補修を行い、ひび割れ注入材が硬化したことを確認したうえで保温 水槽により28日間の50℃の温水を負荷させた後、気中で1日乾燥させ、ひび割れ注入材を施 工したコア切削位置に再度コア切削を行い、50℃の恒温室内で引張接着強度試験を行った。 なお、ひび割れ注入材はエポキシ樹脂製のもので、施工可能な材料を選定した。

なお、ケース2のSTEP2とケース3のSTEP1、ケース2のSTEP3とケース3のSTEP2はそれぞ れ同じ環境負荷と小型試験体加工の条件である。小型試験体は引張接着強度試験の試験数 が9箇所と限られているため、異なる小型試験体を用いて、ケース2では模擬貫通ひび割れ から接着剤に水分が浸透した場合の影響と、模擬貫通ひび割れから浸透した水分が乾燥し た後の影響を把握することを目的に、ケース3ではひび割れ注入材を施工した場合の補修効 果の影響を把握するために試験を実施した。

図-2.1.5 ケース3の環境負荷と小型試験体加工の条件

(2) 小型試験体へのひび割れ導入等の加工

SFRC 舗装と鋼板から構成される小型試験体 2 体を対象に, 貫通ひび割れを模擬した 切り込みをカッターで導入した(写真-2.1.11)。なお, カッターの刃厚は 2.7mm を用 いた(写真-2.1.12)。また, 図-2.1.6, 写真-2.1.13 に示すように, ひび割れは 1 つの 小型試験体に対して 3 本を導入した。

写真-2.1.11 カッターによる 模擬貫通ひび割れ導入状況

写真-2.1.12 カッターにより導入した 模擬貫通ひび割れ(3mm 幅)

図-2.1.6 模擬貫通ひび割れ施工図 (単位:mm)

写真-2.1.13 模擬貫通ひび割れ試験体

さらに、模擬貫通ひび割れを導入した小型試験体 2 体について、引張接着強度試験の 実施位置に φ 100mm のコア切削を行った(図-2.1.7,写真-2.1.14~写真-2.1.15)。

図-2.1.7 コア切削 (φ100) 位置(単位:mm)

写真-2.1.14 コア切削状況

写真-2.1.15 コア切削後の小型試験体

(3)環境負荷

各試験体の温水負荷条件の詳細を表-2.1.8に,温水負荷状況を写真-2.1.16に示す。ケース1および2は同一の水槽にて温水負荷を与えた。

表-2.1.8 に示すように,温水負荷を 168 日間浸水する途中で 3 回のブランク期間を 設けた。ブランク期間は実験施設の長期休暇の停電等に伴い設けた期間である。全て の試験体のブランク期間は同じ日数(合計 33 日)を設定した。具体的には,ブランク 期間は試験体を水槽に静置した状態から保温水槽の電源を停止した時刻から,保温水槽 の電源を入れてから水温が 50℃となる時刻までとした。図-2.1.8 にブランク期間中の 水温測定結果を示す。保温水槽の電源を停止してからも,20℃~30℃程度の水温で保 管されていたことがわかる。

ケース 3 の STEP3 のひび割れ注入は STEP2 の引張接着強度試験後に行った。表-2.1.9 にひび割れ注入材の材料の仕様を示す。ひび割れ注入位置は模擬貫通ひび割れの切り込み とコア切削を対象とした。ひび割れ注入の材料はエポキシ樹脂(中粘度)とし、切込み部 周辺に樹脂が付着しないように養生テープ等で養生を行った後、容器から流し込むように 充填させ、注入材がしっかりと浸透するようヘラ等を使用した(写真-2.1.17)。目地材が 硬化した後、養生テープを剥がし、底部まで目地材がしっかりと充填させていることを確 認した(写真-2.1.18)。

ケース						Ŧ	環境負荷条(+					
1	STEP1 引張接着 強度試験	温水期間 0~28日	STEP 2 引張接着 強度試験	温水期間 0~30日	ブランク 期間② 7日間	温水期間 31~65日	ブランク 期間③ 13日間	温水期間 66~154日	ブランク 期間④ 13日間	温水期間 155~168日	STEP 3 引張接着 強度試験	-	I
1		← →		←									
		温水負荷28日			温水負荷168日								
2	_	温水期間 0~28日	STEP1 引張接着 強度試験	温水期間 0~30日	ブランク 期間② 7日間	温水期間 31~65日	ブランク 期間③ 13日間	温水期間 66~154日	ブランク 期間④ 13日間	温水期間 155~168日	STEP 2 引張接着 強度試験	自然乾燥 7日間	STEP 3 引張接着 強度試験
2		\leftarrow											
		温水負荷28日				汨	晶水負荷168	日					
2	温水期間 0~16日	ブランク 期間① 13日間	温水 17~	期間 80日	ブランク 期間② 7日間	温水期間 81~115日	ブランク 期間③ 13日間	温水期間 116~168日	STEP1 引張接着 強度試験	自然乾燥 7日間	STEP 2 引張接着 強度試験	温水期間 0~28日	STEP 3 引張接着 強度試験
5	←											← →	
	温水負荷168日											温水負荷28日	

表-2.1.8 環境負荷条件の詳細

写真-2.1.16 温水負荷状況 (左:ケース1,ケース2 右:ケース3)

図-2.1.8 ブランク期間中の水温測定結果

項		目	ひび割れ注入材
눼	成	分	エポキシ樹脂系
外		観	乳白色
混	合	比	主剤:硬化剤=4:1(重量比)
圧	縮 強	さ	70N/mm ² 以上
曲	げ 強	さ	45N/mm ² 以上
付	姜品	+	6N/mm ² 以上(乾燥面)
们有	旧门田	C	3N/mm ² 以上(湿潤面)

表-2.1.9 ひび割れ注入材の仕様

写真-2.1.17 ひび割れ注入状況

写真-2.1.18 ひび割れ注入後の充填状況の確認

(4) 引張接着強度試験

ケース1からケース3の小型試験体3体に対して,表-2.1.8に示すステップ1からス テップ3まで,各ステップで3回(合計27箇所)の引張接着強度試験を行った。引張 接着強度試験の治具を試験体に接着させる前に,試験体表面の脆弱部(レイタンスなど) を除去するため,ディスクグラインダを用いて試験体表面を研掃した(写真-2.1.19)。試 験体表面には治具との接着性を良くするため,図-2.1.9に示すようにカッターで溝切 (2.5cm ピッチ,幅2mm,深さ1mm程度)を入れた(写真-2.1.20)。表面研掃および整形 後,粉塵等を除去するためアセトンを用いて試験体表面を清掃し試験体と治具との界面破

壊が極力発生しないように留意した。試験体と治具との付着のための接着剤(以下,「治具 用接着剤」という。)にはこれまで同種試験で良好な接着性が確認されているエポキシ系接 着剤を用い,主剤と硬化剤を7:3で計量した上で混合したものを使用した。

建研式引張接着試験はその機構上,治具の肉厚が薄いと治具中心部に応力が集中し,治 具と試験体との界面で剥がれてしまう可能性が高いことがこれまでの同種実験において確 認されている。そのため、本試験ではこれまでの実績から肉厚 60mm の治具(材質 SS400, φ100mm,厚さ 60mm,中心削孔メスねじ径 W 3/8)を使用した(写真-2.1.21)。また,治 具接着の際に,試験体の鋼板と SFRC の接合部に接着剤が垂れ,引張接着強度に影響を及ぼ す可能性が懸念されたため,治具設置時にはコア切削部や模擬貫通ひび割れ導入部にスポ ンジ系の間詰材を仮設置し,治具設置後,治具用接着剤が完全に硬化する前に撤去した(写 真-2.1.22)。試験体に治具を設置した後,1日気中(50℃の恒温室)で養生し,50℃の 恒温室の中で引張接着強度試験を実施した。なお,ケース3のステップ3の引張接着強 度試験は,ひび割れ注入を行った後,温水負荷を28日行い,模擬貫通ひび割れ位置の ひび割れ注入を残した状態で引張接着強度試験のために円状にコア切削し,1日気中 (50℃の恒温室)で養生し,50℃の恒温室の中で引張接着強度試験を行った。 引張接着強度試験は、SFRC 舗装と鋼板の接着剤接合面が破壊するまで載荷し、破壊時の 引張荷重値を計測した。試験は建研式接着力試験器を用い、一定の載荷速度(0.1MPa/sec) となるよう行った(写真-2.1.23)。その他の試験に関する内容は、SFRC 舗装マニュアル^{2.1)} に準拠した。引張接着強度の算出は最大引張荷重(N)を付着面積(mm)で除した値とし た。最大引張荷重は試験体破壊時の荷重のピークとし、付着面積は試験後試験体の SFRC コ アの直径を 2 点計測し、その平均値を直径とした円の面積とした。なお、ケース 2 および ケース 3 では貫通ひび割れ(ひび割れ幅約 3mm)を導入しているため、その面積分(幅 3mm× 実測した直径≒約 300mm²)を差し引いた面積を付着面積とした。引張接着強度試験後の試 験体を写真-2.1.24 に示す。

写真-2.1.19 試験体表面の研掃状況

図-2.1.9 試験体表面の溝加工

写真-2.1.20 試験体表面の整形状況

写真-2.1.21 使用治具

写真-2.1.22 間詰材の仮設置

写真-2.1.23 引張接着強度試験状況

写真-2.1.24 引張接着強度試験後試験体全景

(5) 引張接着強度試験の評価方法

引張接着強度の評価方法について,SFRC 舗装マニュアル^{2.1)} に評価の目安が示されている。接着剤の破壊形態を評価の目安としており,破壊形態は「接着剤とSFRC との混合層あるいはSFRC での破壊の面積割合が 90%以上」が示されている。また,SFRC 舗装マニュアル^{2.1)}の付属資料では現場における施工管理のための試験の場合には引張接着強度を評価の目安として使用できることが示されている。この場合,引張接着強度は「1.0N/mm²以上」を良否の目安とすることが示されている。

破壊形態について,既往研究^{2.5)}では,図-2.1.10 に示すように材料破壊,凝集破壊,界 面破壊の3つに分類されている。材料破壊はSFRC舗装での破壊,凝集破壊は接着剤とSFRC との混合層での破壊,界面破壊は接着剤と鋼板との界面での破壊とされており,材料破壊 または凝集破壊が望ましい破壊形態である。

図-2.1.10 接合部の破壊位置の分類 ^{2.5)の図9を引用}

2.2 引張接着強度試験結果

表-2.2.1 に引張接着強度試験の結果一覧を,図-2.2.1 に引張接着強度のまとめを,図-2.2.2 に界面破壊の割合のまとめを示す。

ケース	STEP	模擬 ひび割れ ・コア削孔	温水負荷 (日)	自然乾燥 (日)	ひび割れ 注入工	試験体	引張接着強度 (N/mm2)		
							試験値	凝集or材料	界面
		無し		0	無し	1	1.93	100	0
	1		0			2	2.01	100	0
1						3	2.24	100	0
						平均	2.06	100	0
	2	無し	28	0	無し	1	2.24	100	0
						2	2.25	100	0
						3	2.32	100	0
						平均	2.27	100	0
	3	無し	168	0	無し	1	2.09	100	0
						2	2.33	100	0
						3	2.45	100	0
						平均	2.29	100	0
	1	有り	28	0	無し	1	1.52	100	0
						2	1.65	100	0
						3	1.84	100	0
						平均	1.67	100	0
2	2	有り	168	0	無し	1	2.05	55.1	44.9
						2	2.20	85.0	15.0
						3	2.39	51.8	48.2
						半均	2.21	63.97	36.03
	3	有り	168	7	無し	1	1.85	11.3	88.7
						2	1.88	27.7	72.3
						3	1.91	41.1	58.9
						平均	1.88	26./	/3.3
3	1	有り	168	0	無し	1	2.03	100	0
						2	2.08	100	0
						<u>ン</u>	2.10	100	0
						平均	2.09	100	0
	2	有り	168	7	無し	1	1.70	100	0
						2	2.01	100	0
						3	2.02	100	0
						平均	1.93	100	0
	3	有り	196 ※ (168+28)	7	有り	1	2.36	74.4	25.6
						2	2.48	85.8	14.2
						3	2.76	68.6	31.4
						平均	2.53	76.27	23.73

表-2.2.1 引張接着強度試験の結果一覧

※ 168 日温水負荷,自然乾燥7日,ひび割れ注入後に28日の温水負荷を実施した。

図-2.2.1 引張接着強度のまとめ

図-2.2.2 破壊形態の面積割合算出結果のまとめ

2.2.1 ケース1 (模擬貫通ひび割れ無し, 温水負荷28日・168日)

ケース1は初期の引張接着強度および浸水及び温水期間の影響を把握することを目的に 引張接着強度試験を実施した。表-2.2.2にケース1の引張接着強度試験の詳細な結果を示す。

STEP	供試体 番号	設計 直径 (mm)	実測 直径 (mm)	設計付着 面積 (mm ²)	実測付着 面積 (㎜)	付着力 (N)	引張接着 強度 (N/mm ²)	破壊形態 ※下記の A~G	備考
1	1	100	100.1	7854	7870	15,160	1.93	С	A 10.9%, E 89.1%
	2	100	100.1	7854	7870	15,820	2.01	С	A 3.3%, E 96.7%
	3	100	100	7854	7854	17,570	2.24	С	A 7.9%, E 92.1%
	平均值						2.06	_	
2	1	100	99.7	7854	7807	17,500	2.24	С	A 4.2%, E 95.8%
	2	100	99.7	7854	7807	17,600	2.25	С	A 3.2%, E 96.8%
	3	100	99.7	7854	7807	18,100	2.32	С	A 3.9%, E 96.1%
	平均值						2.27	_	
3	1	100	99.8	7854	7823	16,330	2.09	С	A 3.2%, E 96.8%
	2	100	99.7	7854	7807	18,170	2.33	С	A 2.0%, E 98.0%
	3	100	99.8	7854	7823	19,160	2.45	С	A 0.5%, E 99.5%
	平均値						2.29	_	

表-2.2.2 引張接着強度試験の詳細な結果(ケース1)

〔破壊形態〕

A :コンクリート内の破壊

B : コンクリート内の破壊+コンクリートと接着剤の界面の破壊+鋼床版と接着剤の界面の破壊

C : コンクリート内の破壊+コンクリートと接着剤の界面の破壊

D : コンクリートと接着剤の界面+鋼床版と接着剤の界面の破壊

E : コンクリートと接着剤の界面の破壊

F : 鋼床版と接着剤の界面の破壊

G : 冶具と接着剤の界面およびコンクリート上面と接着剤の界面の破壊

1) 引張接着強度

図-2.2.3にケース1の引張接着強度試験結果を示す。図-2.2.3中の数字は,各STEPで3 回行う引張接着強度試験の平均値を示す。

引張接着強度の平均値について,STEP1(初期状態)は2.06N/mm²,STEP2(温水負荷28日)は2.27N/mm²,STEP3(温水負荷168日)は2.29N/mm²であった。温水負荷の期間が長くなるに伴い,引張接着強度が増加する傾向が確認された。

2) 破壊状態

図-2.2.4にケース1の引張接着強度試験を行った後,SFRC舗装側のコアを観察し,破壊 形態の面積割合を算出した結果を示す。写真-2.2.1~2.2.3にケース1の引張試験後の断面 を示す。

各STEPにおいて,破壊状態は接着剤とSFRCとの混合層あるいはSFRCの破壊のみであり, いずれも凝集破壊又は材料破壊であった。既往研究^{2.0}において,コア切削を行い温水負荷 を168日与えた後で引張接着強度試験を実施した結果,一部の試験体では鋼板と接着剤の界 面破壊(最大30%程度)を示すことが報告されているが,本試験では界面破壊は確認されな かった。なお,既往研究の小型試験体はコア切削を行ったうえで温水負荷を与えているが, 本研究のケース1の試験はコア切削を行わずに温水負荷を与えた。既往研究の方が本試験よ りも,コア切削部から温水が浸透するため,それぞれに異なる破壊形態となったと考えら れる。

写真-2.2.1~3より,引張接着強度試験後のSFRC舗装側の断面を観察した結果,鋼材のさびは確認されなかった。

図-2.2.4 ケース1の破壊形態の面積割合

(a) ケース1 STEP1 No.1 (材料破壊)

(b) ケース1 STEP1 No.2 (材料破壊)

(c) ケース1 STEP1 No.3(材料破壊)写真-2.2.1 引張接着強度試験 試験後の状況(ケース1・STEP1)

(a) ケース1 STEP2 No.1 (材料破壊)

(b) ケース1 STEP2 No.2 (材料破壊)

(c) ケース1 STEP2 No.3 (材料破壊)写真-2.2.2 引張接着強度試験 試験後の状況 (ケース1・STEP2)

(a) ケース1 STEP3 No.1 (材料破壊)

(b) ケース1 STEP3 No.2 (材料破壊)

(c) ケース1 STEP3 No.3 (材料破壊)写真-2.2.3 引張接着強度試験 試験後の状況 (ケース1・STEP3)

2.2.2 ケース2(模擬貫通ひび割れ有り,温水負荷168日,乾燥7日)

ケース2は模擬貫通ひび割れ有りの試験体であり、浸水期間の影響の把握を目的に引張接着強度試験を実施した。表-2.2.3にケース2の引張接着強度試験の詳細な結果を示す。

STEP	供試体 番号	設計 直径 (mm)	実測 直径 (mm)	設計付着 面積 (mm ²)	実測付着 面積 (㎜)	付着力 (N)	引張接着 強度 (N/mm ²)	破壊形態 ※下記の A~G	備考
	1	100	99.8	7554	7523	11,400	1.52	С	A 6.5%, E 93.5%
1	2	100	99.4	7554	7462	12,300	1.65	С	A 4.2%, E 95.8%
	3	100	99.9	7554	7539	13,900	1.84	С	A 5.1%, E 94.9%
			<u> </u>	均值			1.67	_	
	1	100	99.8	7554	7523	15,440	2.05	C + F	A 2.3%, E 52.8%, F 44.9%
2	2	100	99.9	7554	7539	16,570	2.20	C + F	A 0.8%, E 84.2%, F 15.0%
2	3	100	99.8	7554	7523	17,950	2.39	C + F	A 5.2%, E 46.6%, F 48.2%
	平均值						2.21	_	
	1	100	99.7	7554	7508	13,900	1.85	C + F	A 0.8%, E 10.5%, F 88.7%
2	2	100	99.8	7554	7523	14,170	1.88	C + F	A 0.8%, E 26.9%, F 72.3%
3	3	100	100	7554	7554	14,420	1.91	C + F	A 0.6%, E 40.5%, F 58.9%
								_	

表-2.2.3 引張接着強度試験の詳細な結果(ケース2)

〔破壊形態〕

A :コンクリート内の破壊

B : コンクリート内の破壊+コンクリートと接着剤の界面の破壊+鋼床版と接着剤の界面の破壊

C : コンクリート内の破壊+コンクリートと接着剤の界面の破壊

D : コンクリートと接着剤の界面+鋼床版と接着剤の界面の破壊

E : コンクリートと接着剤の界面の破壊

F : 鋼床版と接着剤の界面の破壊

G : 冶具と接着剤の界面およびコンクリート上面と接着剤の界面の破壊

1) 引張接着強度

図-2.2.5にケース2の引張接着強度試験結果を示す。図-2.2.5中の数字は,各STEPで3 回行う引張接着強度試験の平均値を示す。

引張接着強度の平均値について,STEP1(温水負荷28日)は1.67N/mm²,STEP2(温水負荷168日)は2.21N/mm²,STEP3(温水負荷168日後に自然乾燥7日)は1.88N/mm²であった。

STEP1は全ケースの中で最も低い引張接着強度であった。要因として、①SFRCの強度の ばらつき、②貫通ひび割れ導入による接着剤の強度の低下、③試験方法によるばらつき(コ アを半分にしたため、引張試験時に応力集中が発生した可能性)等が考えられる。このう ちSFRCの強度のばらつきは、後述する圧縮強度試験で考察を行う。STEP2はケース1と同様 に温水負荷の期間が長くなるに伴い、引張接着強度が増加する傾向が確認された。STEP3 は、自然乾燥により引張接着強度が若干低下した。

図-2.2.5 ケース2の引張接着強度試験結果

2) 破壊状態

図-2.2.6にケース2の引張接着強度試験を行った後,SFRC舗装側のコアを観察し,破壊 形態の面積割合を算出した結果を示す。写真-2.2.4~2.2.6にケース2の引張試験後の断面 を示す。

STEP1(温水負荷28日)の破壊形態は、ケース1のSTEP2と同様に、凝集破壊又は材料破壊であった。STEP2(温水負荷168日)の界面破壊の割合について、15%~48%であり、STEP3

(温水負荷168日後に自然乾燥7日)の界面破壊の割合について,58~88%であることを確認した。模擬貫通ひび割れを導入し温水負荷を与えることで,界面破壊の割合が増加している。

写真-2.2.4~6より,STEP2(温水負荷168日)およびSTEP3(温水負荷168日後に自然 乾燥7日)の引張接着強度試験後のSFRC舗装側の断面を観察した結果,コアの縁部(コア 切削およびひび割れ導入部)に若干さびが発生していることを確認した。コア切削もしく は模擬貫通ひび割れ導入によって鋼板と接着剤との接合部に水が浸入し,さびが発生した 可能性が考えられる。また,さびの発生の度合いはSTEP2よりもSTEP3のほうが大きいこ とから,温水負荷後の自然乾燥によってさびが進展した可能性が考えられる。

なお、どちらの STEP においても引張接着強度は 2.0N/mm²程度が確認された。

図-2.2.6 ケース2の破壊形態の面積割合

(a) ケース 2 STEP1 No.1 (材料破壊)

(b) ケース 2 STEP1 No. 2 (材料破壊)

(c) ケース 2 STEP1 No.3(材料破壊)写真-2.2.4 引張接着強度試験 試験後の状況(ケース2・STEP1)

(a) ケース 2 STEP2 No.1 (材料破壊, 界面破壊)

(b) ケース 2 STEP2 No. 2 (材料破壊, 界面破壊)

(c) ケース 2 STEP2 No.3(材料破壊, 界面破壊)写真-2.2.5 引張接着強度試験 試験後の状況(ケース 2・STEP2)

(a) ケース 2 STEP3 No.1 (材料破壊, 界面破壊)

(b) ケース 2 STEP3 No. 2 (材料破壊, 界面破壊)

(c) ケース 2 STEP3 No.3(材料破壊, 界面破壊)写真-2.2.6 引張接着強度試験 試験後の状況(ケース 2・STEP3)

2.2.3 ケース3(模擬貫通ひび割れ有り、温水負荷168日、乾燥7日、温水負荷28日)

ケース3は模擬貫通ひび割れ有りの試験体であり、ひび割れ注入の影響の把握を目的に引 張接着強度試験を実施した。表-2.2.4にケース3の引張接着強度試験の詳細な結果を示す。

STEP	供試体 番号	設計 直径 (mm)	実測 直径 (mm)	設計付着 面積 (mm ²)	実測付着 面積 (㎜)	付着力 (N)	引張接着 強度 (N/mm ²)	破壊形態 ※下記の A~G	備考
	1	100	99.9	7554	7539	15,270	2.03	С	A 33.2%, E 66.8%
1	2	100	100.3	7554	7600	15,820	2.08	С	A 36.9%, E 63.1%
1	3	100	100.1	7554	7569	16,320	2.16	С	A 12.0%, E 88.0%
			<u>1</u>	均值		2.09	-		
2	1	100	99.9	7554	7539	13,280	1.76	С	A 16.4%, E 83.6%
	2	100	100	7554	7554	15,210	2.01	С	A 13.4%, E 86.6%
2	3	100	100	7554	7554	15,260	2.02	С	A 14.7%, E 85.3%
							1.93	_	
	1	100	99.9	7554	7539	17,820	2.36	C + F	A 12.3%, E 62.1%, F 25.6%
2	2	100	99.9	7554	7539	18,710	2.48	C + F	A19.4%, E66.4%, F14.2%
3	3	100	99.7	7554	7508	20,720	2.76	C + F	A 2.5%, E 66.1%, F 31.4%
			<u>1</u>	空均值			2.53	_	

表-2.2.4 引張接着強度試験の詳細な結果(ケース3)

〔破壊形態〕

A :コンクリート内の破壊

B : コンクリート内の破壊+コンクリートと接着剤の界面の破壊+鋼床版と接着剤の界面の破壊

C : コンクリート内の破壊+コンクリートと接着剤の界面の破壊

D : コンクリートと接着剤の界面+鋼床版と接着剤の界面の破壊

E : コンクリートと接着剤の界面の破壊

F : 鋼床版と接着剤の界面の破壊

G : 冶具と接着剤の界面およびコンクリート上面と接着剤の界面の破壊

1) 引張接着強度

図-2.2.7にケース3の引張接着強度試験結果を示す。図-2.2.7中の数字は,各STEPで3 回行う引張接着強度試験の平均値を示す。

引張接着強度の平均値について,STEP1(温水負荷168日)は2.09N/mm²,STEP2(温水負荷168日後に自然乾燥7日)は1.93N/mm²,STEP3(温水負荷168日後に自然乾燥7日し,ひび割れ注入材を施工した後に温水負荷28日後)は2.53N/mm²であった。

STEP2の引張接着強度の平均値はSTEP1と比較して若干強度が小さくなった。STEP3の引 張接着強度の平均値は2.53N/mm²であり,STEP1やSTEP2と比較して強度が大きくなった。 ひび割れ注入材による補強効果の影響や,SFRC舗装内部が湿潤状態となったために引張接 着強度が増加したことによる影響が考えられる。

図-2.2.7 ケース3の引張接着強度試験結果

2) 破壊状態

図-2.2.8にケース3の引張接着強度試験を行った後,SFRC舗装側のコアを観察し,破壊 形態の面積割合を算出した結果を示す。写真-2.2.7~2.2.9にケース3の引張試験後の断面 を示す。

STEP1(温水負荷168日)およびSTEP2(温水負荷168日後に自然乾燥7日)の破壊形態は, ケース2のSTEP2やSTEP3とは異なり,凝集破壊又は材料破壊であった。STEP3(温水負荷 168日後に自然乾燥7日し,ひび割れ注入材を施工した後に温水負荷28日後)の界面破壊の 割合について,14~31%であることを確認した。

写真-2.2.7~9より,引張接着強度試験後のSFRC舗装側の断面を観察した結果,さびが 発生していないことを確認した。ケース 2 ではさびが生じており,ケース 3 ではさびが生 じなかったが,メカニズムとしては明確ではない。

図-2.2.8 ケース3の破壊形態の面積割合

(a) ケース 3 STEP1 No.1 (材料破壊)

(b) ケース 3 STEP1 No.2 (材料破壊)

(c) ケース 3 STEP1 No. 3 (材料破壊)写真-2.2.7 引張接着強度試験 試験後の状況 (ケース 3・STEP1)

(a) ケース 3 STEP2 No.1 (材料破壊)

(b) ケース 3 STEP2 No. 2 (材料破壊)

(c) ケース3 STEP2 No.3 (材料破壊)写真-2.2.8 引張接着強度試験 試験後の状況 (ケース3・STEP2)

(a) ケース 3 STEP3 No.1 (材料破壊, 界面破壊)

(b) ケース 3 STEP3 No.2 (材料破壊, 界面破壊)

(c) ケース3 STEP3 No.3 (材料破壊, 界面破壊)写真-2.2.9 引張接着強度試験 試験後の状況 (ケース3・STEP3)

2.3 引張接着強度試験の考察

2.2 で実施した3ケースの小型試験体の結果より,引張接着強度に対して,温水負荷期間の影響,模擬貫通ひび割れが与える影響,自然乾燥が与える影響及びひび割れ注入が与える影響をそれぞれ整理し,考察を述べる。

2.3.1 温水負荷期間の影響

温水負荷期間が引張接着強度に与える影響を確認した。図−2.3.1~2.3.3 に温水負荷期 間と引張接着強度・界面破壊の割合の関係を示す。

温水負荷の有無の影響を確認するためにケース1のステップ1(温水負荷無し)とケース 1のステップ2(温水負荷有り,28日)の引張接着強度を比較した結果,ケース1のステッ プ2(温水負荷有り,28日)の引張接着強度が若干大きく,温水負荷を作用させることに より引張接着強度が若干増加することが確認された。

温水負荷を与えてから自然乾燥させた場合の影響を確認するためにケース2のステップ2 (温水負荷 168 日)とケース2のステップ3(温水負荷 168 日後7日乾燥)や,ケース3の ステップ1(温水負荷 168 日)とケース3のステップ2(温水負荷 168 日後7日乾燥)の引 張接着強度を比較した結果,自然乾燥の影響により引張接着強度が若干減少することが確 認された。つまり、SFRC 舗装内に水が含まれた状態か否かで引張接着強度に変化が生じて いる。また、温水負荷期間 28 日、168 日による影響を確認するため、模擬貫通ひび割れが 有る場合と無い場合に分類して考察した。模擬貫通ひび割れやコア切削が無い場合として、 ケース1のステップ2(温水負荷 28 日)とケース1のステップ3(温水負荷 168 日)の引 張接着強度を比較した結果,引張接着強度の変化は小さいことが確認された。一方で、模 擬貫通ひび割れやコア切削がある場合として、ケース2のステップ1(温水負荷 28 日)と ケース2のステップ2(温水負荷 168 日)の引張接着強度を比較した結果、温水負荷期間が 長いほどに引張接着強度が増加していることが確認された。

図-2.3.1 温水負荷期間と引張接着強度・界面破壊の割合の関係(ケース1)

(a) 引張接着強度
 (b) 界面破壊の割合
 図-2.3.2 温水負荷期間と引張接着強度・界面破壊の割合の関係(ケース2)

図-2.3.3 温水負荷期間と引張接着強度・界面破壊の割合の関係(ケース3)

2.3.2 模擬貫通ひび割れの影響

模擬貫通ひび割れが引張接着強度に与える影響を確認した。試験体に与えた環境負荷を 図−2.3.4 に,引張接着強度試験の結果を図−2.3.5 に示す。

図-2.3.5(a)は温水を28日負荷させた条件の引張接着強度試験の結果である。引張接着 強度の平均値について、模擬貫通ひび割れが無いケース1のSTEP2は2.27 N/mm²、模擬貫 通ひび割れが有るケース2のSTEP1は1.67 N/mm²であった。模擬貫通ひび割れが有る引張 接着強度は模擬貫通ひび割れが無い結果と比較して、約26%低下した。

図-2.3.5(b) は温水を 168 日負荷させた条件の引張接着強度試験の結果である。引張接着 強度の平均値について、模擬貫通ひび割れが無いケース1の STEP3 は 2.29 N/mm²、模擬貫 通ひび割れが有るケース2の STEP2 は 2.21 N/mm²、同じく模擬貫通ひび割れがあるケース 3の STEP1 は 2.09 N/mm²であった。模擬貫通ひび割れが有る引張接着強度は模擬貫通ひび 割れが無い結果と比較して、それぞれ約 3.5%、約 8.7%低下した。

模擬貫通ひび割れが有るケースは,接着材に水分が浸透しやすくなるため,模擬貫通ひ び割れが無いケースよりも引張接着強度試験が低下したと考えらえる。なお,引張接着強 度は、温水負荷期間に関係なく低下した。

引張接着強度が低下した要因として、模擬貫通ひび割れに加えて、SFRCの強度のばらつき、貫通ひび割れ導入による接合部の強度の低下、試験方法によるばらつき(コアを半分にしたため、引張試験時に応力集中が発生した可能性)等が考えられる。

(b) 温水 168 日 図-2.3.4 試験体に与えた環境負荷

図-2.3.5 模擬貫通ひび割れが引張接着強度に及ぼす影響

2.3.3 自然乾燥の影響

温水負荷後の自然乾燥が引張接着強度に与える影響を確認した。試験体に与えた環境負荷を図-2.3.6に,引張接着強度試験の結果を図-2.3.7に示す。

温水を 168 日負荷させた試験結果と,その後 7 日間の自然乾燥(気中養生)を行った試 験結果を比較する。この比較は,実橋で SFRC 舗装の表面に発生したひび割れから雨水が接 着材に浸透し湿潤状態となった後で,接着材が乾燥して水分が散逸された状況を想定した ものである。

図-2.3.7(a) はケース2の試験結果である。引張接着強度の平均値について,温水を168 日負荷させたケース2の STEP2 は 2.21 N/mm²,その後7日間の自然乾燥を行ったケース2 の STEP3 は 1.88 N/mm² であった。自然乾燥により,引張接着強度が約15%低下した。

図-2.3.7(b) はケース3の試験結果である。温水を168日負荷させたケース3のSTEP1 の引張接着強度の平均値は2.09 N/mm², その後7日間の自然乾燥を行ったケース3のSTEP2 の引張接着強度の平均値は1.93 N/mm²であった。自然乾燥により,引張接着強度が約7.6% 低下する結果となった。

温水負荷後に自然乾燥を行うことにより,引張接着強度が低下する結果となった。これは SFRC 舗装内部の水が自然乾燥によって逸散し,SFRC 舗装の体積が減少するために内部に引張応力が発生し,引張接着強度が低下したものと考えられる。

図-2.3.7 自然乾燥が引張接着強度に及ぼす影響(温水 168 日, 自然乾燥 7日)

2.3.4 ひび割れ注入の影響

模擬貫通ひび割れへの注入材による補修が引張接着強度に与える影響を確認した。試験体に与えた環境負荷を図-2.3.8に,引張接着強度試験の結果を図-2.3.9に示す。

温水負荷を 168 日行った後で自然乾燥を 7 日行った試験結果と,その後,模擬貫通ひび 割れとコア切削位置にひび割れ注入による補修を行い,温水負荷を 28 日行った試験結果を 比較する。この比較は,実橋で SFRC 舗装のひび割れを補修した状況を想定したものである。

図-2.3.9 より,引張接着強度の平均値について,ひび割れ注入前は1.93 N/mm²,ひび割 れ注入後は2.53 N/mm²であった。ひび割れ注入を行い,温水を28日負荷させることによっ て,引張接着強度が約31%増加した。

この要因として、①ひび割れ注入によって界面への温水負荷や水の浸入の影響が少なく なったこと、②コアが一体となったことで試験時の応力集中(試験用治具と SFRC 舗装間の 応力集中)の影響が低減されたこと、③試験や試験体のばらつき等が考えられる。なお、 SFRC の強度増加については事前に 168 日温水負荷を与えた試験体であったため、追加で温 水負荷 28 日を与えたことによってが強度が増加したとは考え難い。このうち、試験や試験 体のばらつきについては、後述する圧縮強度試験で考察を行う。ひび割れ注入による補修 によって引張接着強度が回復する可能性が示唆された。

図-2.3.8 試験体に与えた環境負荷

図-2.3.9 ひび割れ注入が引張接着強度に及ぼす影響 (ケース 3)

2.4 圧縮強度試験

2.2 や2.3 に示すように,SFRC の強度のばらつきが引張接着強度に影響を与えている可能性が考えられるため,引張接着強度試験後の試験体を用いて圧縮強度試験を実施し,SFRC の強度のばらつきの評価を行う。

2.4.1 試験体の加工

ケース 1~3 の試験体について,引張接着強度試験を行っていない範囲を対象に, ϕ 45, ϕ 50の圧縮強度試験用の試験体を採取した。**写真-2**.4.1にコアの位置とコア採取後の試験 体を示す。なお,ケース 2 の小型試験体について,試験体の採取方法や圧縮強度試験の実 施に不具合がないか確認することを目的に,2箇所を ϕ 45 の予備試験体とし,先行して一 連の試験を実施した。予備試験により試験方法に問題がないことを確認した上で,他の試 験体の圧縮強度試験を実施した。

(a) ケース1の小型試験体

(b) ケース2の小型試験体

(c)ケース3の小型試験体
 写真-2.4.1 コアの位置とコア採取後の試験体
 (※黒字・ピンク: Φ45 試験体,赤字:Φ50 試験体)

試験体の採取方法について、1 つの小型試験体から8 個(ケース2のみ10 個)の試験体の作成を行った。事前に採取位置をマーキングし(写真-2.4.2)、ずれが無いように切削ビットを用いたコア切削を行い、鋼板部である裏面からトーチバーナにより加熱(写真-2.4.3)することで接着材と圧縮強度試験用のコアを分離させた。加熱後、マイナスドライバにて試験体が損傷しないようにコアの採取を行った(写真-2.4.4)。

(a) ケース1の試験体

(b) ケース2の試験体

(c) ケース3の試験体 写真-2.4.2 切削位置のマーキング

写真-2.4.3 トーチバーナによる加熱と温度測定

(a) ケース 1・ *ϕ* 45

(b) ケース 1・φ 50

(c) ケース2・ ϕ 45

(d) ケース2・φ50

(e) ケース3・ *ϕ* 45

写真-2.4.4 切削状況

加熱温度について,既往研究^{2.4)}よりコンクリートの圧縮強度は 100℃を超えると内在す る水分が散逸し強度に影響を及ぼすことから,試験体への加温温度が 100℃を超えないよう に温度管理を行った。採取時の裏面温度と採取直後の試験体の温度測定結果を表-2.4.1 に 示す。

研磨処理後の試験体寸法を計測した後,試験体の含水比を一定にするため, 養生室(20℃環境)にて40時間以上水浸養生を行った(写真-2.4.5)。

Φ	45	鋼板裏面温度 (℃)	供試体底面温度 (℃)
	1	95	73
CASE 1	2	104	75
CASE I	3	98	81
	4	101	83
	1	99	80
CASE2	2	102	83
	3	107	87
	4	105	81
	4'	101	77
	1	107	90
CASE3	2	109	89
CASES	3	101	93
	4	104	93

表-2.4.1 採取時の鋼板裏面温度と試験体底面温度測定結果

Φ50		鋼板裏面温度 (℃)	供試体底面温度 (℃)	
	1	98	77	
CASE 1	2	98	79	
CASE I	3	103	80	
	4	99	86	
	1	96	83	
CASE2	2	99	81	
CASE2	3	102	88	
	4	103	89	
	1	104	88	
CASE2	2	102	89	
CASES	3	104	90	
	4	105	91	

写真-2.4.5 水浸養生(20℃ 40時間以上)

2.4.2 試験方法

加工した圧縮強度試験用の試験体 24 体を対象に圧縮強度試験を行った。試験方法はコン クリートの圧縮強度試験方法 (JISA 1108:2018) に準拠した。写真-2.4.6 に圧縮強度試験機 と試験状況を示す。圧縮強度試験は、養生水槽から取り出し、試験体重量を測定した後、 速やかに試験を実施した。載荷試験時には変位量も確認した。なお試験体の縦横比の補正 は表-2.4.2 より行った。

写真-2.4.6 圧縮強度試験機

高さと直径の比(h/d)	補正係数	備考
2	1	
1.75	0.98	h/d がこの表に示す値の中間に
1.5	0.96	ある場合, 補正係数を補間して
1.25	0.93	求める。
1	0.87	

表-2.4.2 丿	王縮強度試験における補正係数
-----------	----------------

2.5 圧縮強度試験の結果

圧縮強度試験について、 φ45 及びφ50 の結果を表-2.5.1 と図-2.5.1 に示す。圧縮強度 試験結果の各ケースに対してスミルノフ・グラブス棄却検定(5%, T=1.481(n=4)) により 棄却判定を行った。なお,表-2.5.1 で灰色に着色した試験値は,棄却判定の結果により棄 却された試験値である。

圧縮強度試験における試験径の影響について、ケース1とケース3におけるφ50の試験 値はφ45の試験値と比較して若干大きな値を示すとともに、試験値のばらつきはφ50の方 が小さかった。また、小型試験体(ケース)ごとの比較では、ケース1の圧縮強度試験の 結果が試験径によらず、2割程度大きな値を示した。

φ 45	CASE1	CASE2	CASE3	ϕ	50	CASE1	CASE2	CASE3
1	68.7	49.4	44.8	1		68.7	52.1	47.9
2	68.1	53.4	59.2	2		71.1	53.5	55.0
3	62.6	62.9	40.1	3		72.3	59.1	56.7
4	65.7	55.6	60.8	4		73.6	52.0	55.0
平均	66.3	55.3	51.2	平	均	71.4	54.2	55.6
最大値	68.7	62.9	60.8	最大	:値	73.6	59.1	56.7
最小値	62.6	49.4	40.1	最小	、値	68.7	52.0	55.0
標準偏差	2.8	5.7	10.3	標準	偏差	2.1	3.4	1.0

表-2.5.1 圧縮強度試験結果

図-2.5.1 圧縮強度試験結果

2.5.1 ケース1 (模擬貫通ひび割れ無し, 温水負荷 28 日・168 日)

ケース1の試験体は合計196日間温水に浸漬したものである。圧縮強度試験後の供試体 を写真-2.5.1 に示す。ケース 1 の試験結果について、試験体の位置と対応した結果を図 -2.5.2に示す。試験体の位置による傾向の違いはみられない。

圧縮強度の平均値について、φ 45 は 66.3 N/mm²、φ 50 は 71.4 N/mm² であり、直径の違 いで 5.1 N/mm²の差が確認された。

φ45 写真-2.5.1 圧縮強度試験後の供試体

(b) φ50

図-2.5.2 圧縮強度試験結果(N/mm²)(黒字φ45,赤字φ50)

2.5.2 ケース2(模擬貫通ひび割れ有り,温水負荷168日,乾燥7日)

ケース2の試験体は模擬貫通ひび割れを設け,合計168日間温水に浸漬したものである。 圧縮強度試験後の供試体を写真-2.5.2に示す。ケース2の試験結果について,試験体の位置と対応した結果を図-2.5.3に示す。なお,ケース2はφ45を6箇所で実施している。試験体の位置による傾向の違いはみられない。

圧縮強度の平均値について、 φ 45 は 55.3N/mm² , φ 50 は 54.2 N/mm² であり、直径の違いで 1.1 N/mm²の差が確認された。

(a) φ 45

(c) φ45(予備試験)
 写真-2.5.2 圧縮強度試験後の供試体

図-2.5.3 圧縮強度試験結果 (N/mm²) (黒字 φ 45, 赤字 φ 50, オレンジ φ 45 (予備試験))

2.5.3 ケース3(模擬貫通ひび割れ有り、温水負荷168日、乾燥7日、温水負荷28日)

ケース3の試験体は模擬貫通ひび割れを設け,合計 196 日間温水に浸漬したものである。 圧縮強度試験後の供試体を写真-2.5.3 に示す。ケース3の試験結果について,試験体の位 置と対応した結果を図-2.5.4 に示す。試験体の位置による傾向の違いは確認することが出 来なかった。ケース3の φ 45の試験結果は最もばらつきが大きく,標準偏差が 10.3 であ った。また, φ50の試験結果において,1箇所の試験値(47.9 N/mm²)で棄却される結果と なっため,平均値の算出にあたって棄却された結果は除いた。これらの結果から,ケース3 の小型試験体はばらつきが大きい可能性がある。

圧縮強度の平均値について、 ϕ 45 は 51.2 N/mm² 、 ϕ 50 は 55.6 N/mm² であり、直径の違いで 3.1 N/mm²の差が確認された。なお、1 箇所の試験値(47.9 N/mm²)を棄却しなかった場合、ケース3の ϕ 50 の平均値は 53.7 N/mm²,標準偏差 3.9 N/mm² であった。

(b) φ50

写真-2.5.3 圧縮強度試験後の供試体

図-2.5.4 圧縮強度試験結果(N/mm²)(黒字φ45, 赤字φ50)

2.6 圧縮強度試験を踏まえた引張接着強度試験の考察

(1) 引張接着強度試験における温度履歴の影響検討

既往研究^{2.7}では、コンクリートは一般的に材齢が500日程度あれば、水和反応の進行が終 了したものとみなせると述べられている。本試験で使用した小型試験体は引張接着強度試 験を行うまでに、製作から約3年8カ月(約1,400日)が経過していることから、水和反応は 終了していると考えられる。

引張接着強度試験により各ケース異なる期間の温水負荷を作用させているため、温度履歴 に関する差の有無を確認した。具体的には、温度履歴のみを対象として気中、温水中の区 別を無しとして、環境温度のみで積算温度を算出した。また、試験開始前や試験終了後の 期間は、室温を20℃環境であると仮定した。各ケースの積算温度を算出した結果を **表-2.6.1**に示す。全試験の完了時点においては、すべての小型試験体において同じ積算温 度となった。従って、引張接着強度試験の温度履歴は、全てのケースで同じ条件であった と考えられる。このため、温水負荷によりコンクリートの水和反応が進行し、ケースごと に差を与えた結果になることは考えにくい。ただし、ケース2、3は試験中の温度降下がケ ース1に比べて1回多く、加温水浸状態から常温気中状態となっており、内部の水分が散逸 したとも考えられる。

ケース1		ケース2		ケース3	
試験条件	積算温度DD	試験条件	積算温度DD	試験条件	積算温度DD
50℃気中1日 試験	60	室温1日 保管	30	室温1日 保管	30
50℃温水28日 養生	1,680	50℃温水28日 養生	1,680	室温28日 保管	840
50℃気中1日 試験	60	50℃気中1日 試験	60	室温1日 保管	30
50℃温水168日 養生	10,080	50℃温水168日 養生	10,080	50℃温水168日 養生	10,080
50℃気中1日 試験	60	50℃気中1日 試験	60	50℃気中1日 試験	60
室温7日 保管	210	室温気中7日 養生	210	室温気中7日 養生	210
室温1日 保管	30	50℃気中1日 試験	60	50℃気中1日 試験	60
室温28日 保管	840	室温28日 保管	840	50℃温水28日 養生	1,680
室温1日 保管	30	室温1日 保管	30	50℃気中1日 試験	60
合計	13,050	合計	13,050	合計	13,050

表-2.6.1 引張接着強度試験の温度履歴

なお、積算温度(DD)は以下の式により求めた。

 $D D = \Sigma \{ (\mathbb{L} \mathfrak{E} + 10) \times H \mathfrak{A} \}$

室温及び室温気中 : 20℃

50℃温水及び50℃気中 : 50℃

(2)供試体密度と圧縮強度の確認

圧縮試験前に測定した密度(40時間以上水浸)と圧縮強度の関係を表-2.6.2, 図-2.6.1に示す。相関係数は0.89であり,密度と圧縮強度に相関関係があることが確認できた。

以上のことから、ケース1に対してケース2,3の強度に差が生じた主な要因は、以下の2つが考えられる。

- ・乾湿の繰り返しが影響し、ケース2、3は強度低下が生じた。なお、ケース1と比較した際に、高温から常温への温度降下の回数は1回異なる。
- ② 供試体の密度と圧縮強度に相関性があり差が生じた。

		φ45 供試体		φ 50 供試体						
	ケース1	ケース2	ケース3	ケース1	ケース2	ケース3				
密度(kg/cm ³)	2.253	2.173	2.161	2.248	2.159	2.153				
圧縮強度(N/mm ²)	66.3	55.3	51.2	71.4	54.2	55.6				

表-2.6.2 供試体密度と圧縮強度の比較

(3) 引張接着強度試験結果の考察

1)ケース1

図-2.6.2にケース1における引張接着強度試験及び圧縮強度試験の位置関係と試験結果 を,表-2.6.3に引張接着強度に対する圧縮強度の平均値を,図-2.6.3に引張接着強度と圧 縮強度の平均値の関係を示す。

表-2.6.3では、引張接着強度と圧縮強度の関係性を確認するため、引張接着強度の試験 位置周辺で実施した2箇所または4箇所の圧縮強度試験結果の平均値を算出した。この算出 した圧縮強度の平均値を、引張接着強度に対する代表値として設定した。

図-2.6.3では,表-2.6.3で整理した引張接着強度に対する圧縮強度の代表値とそれぞれ の引張接着強度の関係を整理した。9箇所の試験結果から,引張接着強度と圧縮強度の相関 関係はみられなかった。

STEP3 68 7 68 7				
	5 7 1	圧縮強度	(N/mm^2)	
(2.45) (2.33) (2.09)	$\gamma - \chi 1$	φ 45	φ 50	
	1	68.7	68.7	
<u>68.1</u> 71.1	2	68.1	71.1	
STEP2	3	62.6	72.3	
(2.25) (2.32) (2.24)	4	65.7	73.6	
	平均	66.3	71.4	
62.6 72.3		그 그는 누수		2)
	ケース1	5] 張接	看强度(N	/mm ⁻)
	, , , , ,	左列	中央	右列
(1.93) (2.01) (2.24)	STEP3	2.45	2.33	2.09
	STEP2	2.25	2.32	2.24
STEP1 05./ 73.6	STEP1	1.93	2.01	2.24

)φ100引張接着強度試験位置および引張接着強度(N/mm²)

φ45圧縮強度試験位置および圧縮強度 (N/mm²)

● φ 50圧縮強度試験位置および圧縮強度(N/mm²)

衣=2.0.3 1	ース1)
-------------	------

STEP3

51115									
引張接着強度(N/mm ²)	2.4	45		2.	33		2.	09	
圧縮強度(N/mm ²)	68.7	68.1	68.7	68.1	68.7	71.1	68.7	71.1	
平均圧縮強度(N/mm ²)	68	.4		69	9.2		69.9		
STEP2									
引張接着強度(N/mm ²)	2.2	25		2.32 2.24			24		
圧縮強度(N/mm ²)	68.1	62.6	68.1	62.6	71.1	72.3	71.1	72.3	
平均圧縮強度(N/mm ²)	65	.4		68	3.5		71	.7	
STEP1									
引張接着強度(N/mm ²)	1.	93		2.	01		2.	24	
圧縮強度(N/mm ²)	62.6	65.7	62.6	65.7	72.3	73.6	72.3	73.6	
平均圧縮強度(N/mm ²)	64	.2		68	3.6		73	3.0	

図-2.6.3 引張接着強度と圧縮強度の関係 (ケース1)

2) ケース2

図-2.6.4にケース2における引張接着強度試験及び圧縮強度試験の位置関係と試験結果 を,表-2.6.4に引張接着強度に対する圧縮強度の平均値を,図-2.6.5に引張接着強度と圧 縮強度の平均値の関係を示す。

表-2.6.4では、引張接着強度と圧縮強度の関係性を確認するため、引張接着強度の試験 位置周辺で実施した1箇所から3箇所の圧縮強度試験結果の平均値を算出した。この算出し た圧縮強度の平均値を、引張接着強度に対する代表値として設定した。

図-2.6.5では,表-2.6.4で整理した引張接着強度に対する圧縮強度の代表値とそれぞれの引張接着強度の関係を整理した。9箇所の試験結果から,引張接着強度と圧縮強度の相関関係はみられなかった。

STEP3 49.4	4 5	2.1
1.91	1.88	1.85
STEP2 53.4	4	3.4
2.20	2.05	2.39
53.5 62.9	5	9.1 52.0
1.52	1.84	1.65
STEPI		

ケーマク	圧縮強度(N/mm ²)			
1) 1 12	φ 45	φ 50	φ45予備	
1	49.4	52.1	46.6	
2	53.4	53.5	64.3	
3	62.9	59.1		
4	55.6	52.0		
平均	55.3	54.2		

ケース2	引張接着強度(N/mm ²)			
	左列	中央	右列	
STEP3	1.91	1.88	1.85	
STEP2	2.20	2.05	2.39	
STEP1	1.52	1.84	1.65	

() φ100引張接着強度試験位置および引張接着強度 (N/mm²)

φ45圧縮強度試験位置および圧縮強度(N/mm²)

) φ 50 圧縮強度試験位置および圧縮強度 (N/mm²)

図-2.6.4 引張接着強度試験結果と圧縮強度試験結果の位置関係 (ケース2)
表-2.6.4 引張接着強度に対する圧縮強度の平均値 (ケース2)

STEP3

51115										
引張接着強度(N/mm ²)	1.	91		1.88		1.85				
圧縮強度(N/mm ²)	49.4	53.4	49.4	53.4	52.1	52.1				
平均圧縮強度(N/mm ²)	51	.4	51.6			52.1				
STEP2										
引張接着強度(N/mm ²)		2.20			2.05		2.	39		
圧縮強度 (N/mm ²)	53.5	53.4	62.9	53.4	62.9	59.1	59.1	52.0		
平均圧縮強度(N/mm ²)		56.6			58.5			55.6		
STEP1										
引張接着強度(N/mm ²)	1.:	1.52 1.84 1.65			1.84					
圧縮強度 (N/mm ²)	53.5	62.9	62.9	59.1	55.6	59.1	55.6	52.0		
平均圧縮強度(N/mm ²)	58	3.2		59.2			55.6			

3) ケース3

図-2.6.6にケース3における引張接着強度試験及び圧縮強度試験の位置関係と試験結果 を,表-2.6.5に引張接着強度に対する圧縮強度の平均値を,図-2.6.7に引張接着強度と圧 縮強度の平均値の関係を示す。

表-2.6.5では、引張接着強度と圧縮強度の関係性を確認するため、引張接着強度の試験 位置周辺で実施した1箇所から4箇所の圧縮強度試験結果の平均値を算出した。この算出し た圧縮強度の平均値を、引張接着強度に対する代表値として設定した。

図-2.6.7では,表-2.6.5で整理した引張接着強度に対する圧縮強度の代表値とそれぞれの引張接着強度の関係を整理した。9箇所の試験結果から,引張接着強度と圧縮強度の相関関係はみられなかった。

STEDI				
44.8 47.9	5-72	圧縮強度	(N/mm^2)	
	// //3	φ 45	φ 50	
2.16 2.08 2.03	1	44.8	47.9	
50.2	2	59.2	55.0	
STEP2 39.2 53.0	3	40.1	56.7	
	4	60.8	55.0	
2.01 2.02 1.76	平均	51.2	55.6	
<u>40.1</u> <u>56.7</u>	ケーフ3	引張接	着強度(N	$1/\mathrm{mm}^2$
	/ // 3	左列	中央	右列
(2.76) (2.48) (2.36)	STEP1	2.16	2.08	2.03
	STEP2	2.01	2.02	1.76
STEP3 60.8 55.0	STEP3	2.76	2.48	2.36

🔵 φ100引張接着強度試験位置および引張接着強度 (N/mm²)

φ45圧縮強度試験位置および圧縮強度(N/mm²)

φ 50 圧縮強度試験位置および圧縮強度(N/mm²)

図-2.6.6 引張接着強度試験結果と圧縮強度試験結果の位置関係 (ケース3)

表-2.6.5 引張接着強度に対する圧縮強度の平均値 (ケース3)

STEP3

01210											
引張接着強度(N/mm ²)	2.	16		2.08		2.03					
 压縮強度 (N/mm ²)	44.8	59.2	44.8	59.2	55.0	55.0					
平均圧縮強度(N/mm ²)	52	.0	53.0			53.0 55.0			53.0 55.0		
STEP2							-				
引張接着強度(N/mm ²)	2.0	01		2.	02		1.	76			
圧縮強度 (N/mm ²)	59.2	40.1	59.2	40.1	55.0	56.7	55.0	56.7			
平均圧縮強度(N/mm ²)	49	.7		52	2.8		55.9				
STEP1											
引張接着強度(N/mm ²)	2.7	76		2.	48		1.	65			
圧縮強度(N/mm ²)	40.1	60.8	40.1	60.8	56.7	55.0	56.7	55.0			
平均圧縮強度(N/mm ²)	50	.5		53	3.2		55	5.9			

図-2.6.7 引張接着強度と圧縮強度の関係 (ケース3)

3. 浸水負曲げ疲労試験

SFRC 舗装の負曲げ域に生じるひび割れの進展性状等の把握と,ひび割れの進展に伴い水 が浸入することによる引張接着強度の影響について把握することを目的に,小型の試験体 を用いて静的負曲げ試験及び浸水負曲げ疲労試験を実施した。また,浸水負曲げ疲労試験 の後には,引張接着強度試験を行った。なお,負曲げ疲労試験は,通行車両の車輪が主桁 ウェブを跨ぐ場合を想定するものである。また,浸水負曲げ疲労試験の後に,引張接着強 度試験を行った。

3.1 試験概要

3.1.1 試験体

供試体寸法は既往研究^{3.1),3.2)}を参考に,鋼床版デッキプレートに相当する板厚 12mm の鋼板(500mm×550mm)の上に,厚さ75mmのSFRC 舗装(500mm×400mm)を配置した。 SFRC 舗装の中央高(37.5mm)の位置に,主桁ウェブ等の負曲げ域を想定した補強材を配置した。鋼板とSFRC 舗装を接合するための接着剤は,エポキシ系接着剤 B(表-2.1.3 参照)を用いた。小型試験体の寸法を図-3.1.1 に示す。

3.1.2 試験体の製作

小型試験体は,2.1.1と同じ材料および方法で製作した。なお,補強材は鉄筋格子(異形鉄筋 D10)を設置した。

3.1.3 試験方法

(1) 一般

静的な負曲げ試験により小型試験体にひび割れを導入した後,浸水負曲げ疲労試験を実施した。

1)静的負曲げ試験

静的負曲げ試験は,図-3.1.2 に示すように試験体の片側上面と中央下面を支点として支持し,片持ちの状態で試験体を設置し,もう一方の上面に静的に載荷した。

2) 浸水負曲げ疲労試験

実橋で想定されるひび割れとなるよう載荷試験を実施した。既往研究 ^{3.1}によれば,主桁 ウェブ直上の SFRC に貫通ひび割れを生じた状態で,大型車の左右の輪が主桁ウェブを跨ぐ ように載荷された場合(後輪2軸8輪,1輪あたり 50kN と想定)にひび割れ幅が 0.1mm 程 度になることが想定される。これに荷重の実態を考慮した余裕等を見込んでひび割れが 0.2mm 程度となるまで載荷試験を行った。その後,写真-3.1.1 に示すように試験体上面の 四辺の縁に水を溜めることができる壁(エポキシ樹脂)を設置して,SFRC 舗装の表面を浸 水状態にし,ひび割れが 0.2mm 程度となるように試験機変位を調整し,変位制御で 200 万 回の繰り返し載荷を実施した。

図-3.1.2 試験体の支点と載荷点

写真-3.1.1 小型試験体上面の水張り

(2) 載荷方法

試験機は土木研究所所有の「50/75tf門型構造物繰返し載荷装置」を使用した。試験機の荷 重について,静的負曲げ試験はひび割れが生じるまで荷重を載荷した。最大荷重は44.85kN であった。浸水負曲げ疲労試験はひび割れが0.2mm程度となるように,荷重を1.3kN~37kN の範囲で調整し,繰り返し載荷を行った。繰り返し回数が1万回に到達するまでは0.5Hzで載 荷し,繰り返し回数が1万回から200万回までは1Hzで載荷した。

図-3.1.3に示すように試験体を設置した状態で繰り返し載荷した。試験にあたっては、 載荷点位置の応力集中を避けるため、載荷点上面は幅30mm,長さ400mm,厚さ20mmのク ロロプレンゴムと鋼板6mmを介して載荷した(写真-3.1.2)。

(3) 計測位置

小型供試体に対して,SFRC 舗装の上面及び側面,鋼板部にひずみゲージ及びπゲージ を設置した。また,小型試験体の四隅に変位計を設置した。表-3.1.1に計測機器の規格及 び数量を,図-3.1.4に計測機器の設置位置を,写真-3.1.3に計測機器の設置状況をそ れぞれ示す。

表-3.1.1 計測機器の規格及び数量

計測機器	規格(いずれも(株)東京測器研究所製)	数量
ひずみゲージ(1 軸)	FLKB-1-11-5LJCT (一般用(鋼材用))	6
	FLM-60-11-5LJCT (コンクリート用)	6
変位計	CDP-25(25mm まで測定可能)	4
πゲージ	PI-2-100(2mm まで測定可能)	7

図-3.1.4 計測機器の設置位置(単位:mm)

- (a) 変位計設置状況(載荷点直下)
- (b) ひずみゲージ設置状況(コンクリート上面)

(c) ひずみゲージ設置状況 (コンクリート側面 北側)

(d) ひずみゲージ設置状況 (コンクリート側面 南側)

(e) ひずみゲージ設置状況 (鋼板側面 北側)

(f) ひずみゲージ設置状況 (鋼板側面 南側)

- (g)ひずみゲージ設置状況(鋼板下面) (h) πゲージ設置状況(上面)

写真-3.1.3 計測機器の設置状況(その2)

(g) π ゲージ設置状況 (北側)

(h) π ゲージ設置状況 (南側)

3.2 静的負曲げ試験結果

図-3.2.1 に荷重と各計測値(変位,小型試験体の表面におけるコンクリートのひずみ, 小型試験体の側面と下面における鋼板のひずみ, π型変位計による変位)の関係を示す。図 中に丸で囲うデータは最大荷重の各計測値を示す。写真-3.2.1 に試験後のひび割れ状況を, 図-3.2.2 に π型変位計で計測した最大ひび割れと残留ひび割れを示す。

試験は小型試験体の表面にひび割れが生じるまで静的載荷を行うことを想定して行った。 試験結果について、図-3.2.1 (b) に示すように最大荷重は 44.85kN まで到達し、その後、 荷重が低下するとともにひずみが急増し、ひび割れが発生したと考えられる。荷重 41.41kN の時に目視で確認できるひび割れが発生し、荷重 39.61kN の時に試験体全体にひび割れが発 生した。小型試験体上面の最大ひび割れ幅は 0.1mm,除荷後の残留ひび割れは 0.04mm であ り、想定した通りにひび割れが発生した。

図-3.2.1 (g) (h) より, 鋼板側面の北側と南側の上側ひずみと下側ひずみをそれぞれ比較すると, 北側のひずみの方が南側よりも大きなひずみが発生している。特に鋼板側面下 側では 10 倍近い差が生じている。この原因として,小型試験体が偏心し,北側と南側に対 して荷重を均等に載荷できなかった可能性が考えられる。図-3.2.1 (i) (j) においても, 北側のひずみが若干大きい傾向を示している。これらの結果から,北側の計測結果に偏心 の影響が生じていることが考えられる。

図-3.2.1 荷重と各計測点の計測値の関係(その2)

図-3.2.1 荷重と各計測点の計測値の関係(その3)

写真-3.2.1 試験後のひび割れ状況

図-3.2.2 ひび割れの発生位置とπ型変位計ごとの最大ひび割れ幅と残留ひび割れ幅

3.3 浸水負曲げ疲労試験結果

既往の研究 ^{3.1})では,SFRC 内部の補強材の有無によらずに負曲げ部では輪荷重の影響でひび割れが生じる可能性が大きいことが報告されている。このため,静的載荷によりひび割れを導入した後,疲労試験を行い,ひび割れの進展メカニズムやひび割れ 発生部位の疲労性状を確認した。なお,事前にひび割れを導入するために行った試験は 3.2 で述べている。

図-3.3.1 に試験の繰り返し回数と試験機荷重の関係を示す。ひび割れ幅が一定となるように試験機荷重を調整したため、繰り返し載荷により載荷荷重は若干の低下傾向が見られる。これは SFRC のひび割れによる剛性の低下によるものと考えられる。

図-3.3.2 に試験の繰り返し回数と最大ひび割れ幅の関係を示す。最大ひび割れ幅は約 0.25mm で,疲労試験を通して徐々に増加した。また,除荷後の残留ひびわれ幅は最大で約 0.12mm であった。

ひび割れの進展状況を確認するため、一定の繰り返し回数ごとに、SFRC 舗装の上面より ひび割れにウラニン粉体を浸透させ、側面を観察した。**写真-3**.3.1 に繰り返し回数 100 回、 500 回、1,000 回、3,000 回、5,000 回、1 万回、約 50 万回(52 万回)、約 100 万回(108 万 回)、約 150 万回(152 万回)、200 万回時の側面の状況を示す。疲労試験途中の観察は、 ひずみゲージやπゲージを設置した状態で行った。200 万回の疲労試験終了後の試験体は、 ウラニンの浸透は鋼板に到達する前でとまっており、デッキプレートまで貫通したひび割 れについては SFRC 舗装側面の観察からは確認されなかった。ただし、3.4 で示すとおり 引張接着強度試験後のコアを観察したところ、コア断面に微細なひび割れが生じており、 鋼板部までひび割れが貫通していることが確認された。

疲労試験(100回の繰り返し載荷)により 静的負曲げ試験後から進展したひび割れ(図中の赤色のひび割れ)

静的負曲げ試験により生じたひび割れ(図中の黒色のひび割れ)

(a) 疲労試験 100 回後 写真-3.3.1 側面の観察状況(その1)

疲労試験(100回~500回の繰り返し載荷間)により 100回の繰り返し載荷後から進展したひび割れ(図中の赤色のひび割れ)

静的負曲げ試験及び疲労試験(100回の繰り返し載荷)により生じたひび割れ(図中の黒色のひび割れ)

(b) 疲労試験 500 回後 写真-3.3.1 側面の観察状況(その2)

静的負曲げ試験及び疲労試験(500回の繰り返し載荷)により生じたひび割れ (ひび割れの進展なし)

(c) 疲労試験 1,000 回後 写真-3.3.1 側面の観察状況(その3)

静的負曲げ試験及び疲労試験(500回の繰り返し載荷)により生じたひび割れ (ひび割れの進展なし)

(d) 疲労試験 3,000 回後 写真-3.3.1 側面の観察状況(その4)

静的負曲げ試験及び疲労試験(500回の繰り返し載荷)により生じたひび割れ (ひび割れの進展なし)

(e) 疲労試験 10,000 回後 写真-3.3.1 側面の観察状況(その5)

静的負曲げ試験及び疲労試験(500回の繰り返し載荷)により生じたひび割れ (ひび割れの進展なし)

(f) 疲労試験 約 500,000 回後 写真-3.3.1 側面の観察状況(その6)

静的負曲げ試験及び疲労試験(500回の繰り返し載荷)により生じたひび割れ (ひび割れの進展なし)

(g) 疲労試験 約1,000,000 回後 写真-3.3.1 側面の観察状況(その7)

静的負曲げ試験及び疲労試験(500回の繰り返し載荷)により生じたひび割れ (ひび割れの進展なし)

(h) 疲労試験 約1,500,000回後 写真-3.3.1 側面の観察状況(その8)

静的負曲げ試験及び疲労試験(500回の繰り返し載荷)により生じたひび割れ (ひび割れの進展なし)

(i) 疲労試験 2,000,000回後 写真-3.3.1 側面の観察状況(その9)

3.4 疲労試験後の引張接着強度試験と試験結果

浸水負曲げ疲労試験を実施した後の小型試験体を対象に,ひび割れが生じている負曲げ 部および一般部を対象に,引張接着強度試験を行った。

(1) 試験方法

疲労試験後の小型試験体について、ひび割れが生じている負曲げ部(中央部)に3箇所, 一般部(端部)に3箇所のコア切削を行った(写真-3.4.1)。引張接着強度試験の治具を試 験体に接着させる前に,試験体表面の脆弱部(レイタンスなど)を除去するため,ディス クグラインダを用いて試験体表面を研掃した(写真-3.4.2)。試験体表面には治具との接着 性を良くするため,カッターで溝切(2.5cm ピッチ,幅2mm,深さ1mm程度)を入れた(写 真-3.4.3)。表面研掃および整形後,粉塵等を除去するために試験体表面を清掃し試験体と 治具との界面破壊が極力発生しないように留意した。

試験体と治具との付着のための接着剤(以下,「治具用接着剤」という。)にはこれまで 同種試験で良好な接着性が確認されているエポキシ系接着剤を用い,主剤と硬化剤を7:3 で計量した上で混合したものを使用した。

建研式引張接着試験はその機構上,治具の肉厚が薄いと治具中心部に応力が集中し,治 具と試験体との界面で剥がれてしまう可能性が高いことがこれまでの同種実験において確 認されている。そのため,本試験ではこれまでの実績から肉厚 100mm の治具(材質 SS400, q100mm,厚さ 100mm)を使用した(写真-3.4.4)。

試験体に治具を設置した後、1日気中(23℃の測定室)で養生し、引張接着強度試験 を実施した。引張接着強度試験は、SFRC 舗装と鋼板の接着剤接合面が破壊するまで載荷 し、破壊時の引張荷重値を計測した。試験は建研式接着力試験器を用い、一定の載荷速度

(0.1MPa/sec)となるように行った(写真-3.4.5)。その他の試験に関する内容は, SFRC 舗 装マニュアル^{3.3)}に準拠した。

引張接着強度の算出は最大引張荷重(N)を付着面積(mm)で除した値とした。最大引 張荷重は試験体破壊時の荷重のピークとし,付着面積は試験後試験体の SFRC コアの直径を 2 点計測し,その平均値を直径とした円の面積とした。

写真-3.4.1 コア切削状況

写真-3.4.2 試験体表面の研掃状況

写真-3.4.3 試験体表面の整形状況

写真-3.4.4 使用治具

写真-3.4.5 引張接着強度試験状況

(2) 試験結果

図-3.4.1 に引張接着強度試験の試験位置を,表-3.4.1 に引張接着強度試験の詳細な結果 を示す。また,写真-3.4.6~3.4.7 に引張試験後の断面をそれぞれ示す。

破壊形態は、ひび割れが生じている負曲げ部と一般部の全ての試験結果において、材料 破壊および凝集破壊であった。なお、材料破壊が 90%以上を占めており、材料破壊が主た る破壊形態であった。SFRC 舗装マニュアル ^{3.3)} における破壊形態の評価目安は、「接着剤 と SFRC との混合層あるいは SFRC での破壊の面積割合が 90%以上」と定められている。全 ての試験箇所で、評価目安を満足する結果となった。

引張接着強度について,SFRC 舗装での破壊を示した箇所の平均値はそれぞれ,一般部で 1.88 N/mm², ひび割れが生じている負曲げ部で 1.94N/mm² であり,SFRC 舗装マニュアル ^{3.3)} の付属資料では現場における施工管理のための試験の場合には引張接着強度を評価の目安 として使用できることが示されている。この場合,引張接着強度は「1.0N/mm²以上」を良 否の目安とすることが示されている。なお,ひび割れ部の方が一般部よりも強度が大きい 結果となった。これは,一般部の試験位置①,③において,コアの断面に補強材のスペー サが含まれているためだと考えられる(**写真-3.4.8**)。

引張接着強度試験後のコアを観察したところ、コア断面に微細なひび割れが生じており、 鋼板部までひび割れが貫通していることが確認された(**写真−3.4.9**)。また、コアの側面か らも観察を行ったところ、疲労試験で使用したウラニンが、SFRC舗装の上面から鋼板部ま で到達していることが確認された(**写真−3.4.10**)。

浸水負曲げ疲労試験で200万回の繰り返し載荷を与えた後の試験体において,ひび割れ が生じている負曲げ部と一般部の引張接着強度はSFRC舗装マニュアル^{3.3)}の評価目安を満 足する結果であり,接着剤の引張接着強度の低下は確認できなかった。

図-3.4.1 試験位置

表-3.4.1	引張接着強度試験の詳細な結果

試験位置	供試体 番号	設計 直径 (mm)	実測 直径 (mm)	設計付着 面積 (mm ²)	実測付着 面積 (㎡)	付着力 (N)	引張接着 強度 (N/mm ²)	破壊形態 ※下記の A~G	備考
	1	100	99.5	7554	7776	12,400	1.59	С	A 94%, E 6%
一般部	2	100	99.4	7554	7760	15,100	1.95	С	A 94%, E 6%
川又口口	3	100	99.5	7554	7776	16,300	2.10	С	A 95%, E 5%
			म्	均值			1.88	_	
	4	100	99.5	7554	7776	14,100	1.81	С	A 95%, E 5%
ひび割れ	5	100	99.5	7554	7776	15,300	1.97	С	A 93%, E 7%
部	6	100	99.5	7554	7776	15,900	2.04	C	A 94%, E 6%
			파	均值			1.94	_	

〔破壊形態〕

A : コンクリート内の破壊

B : コンクリート内の破壊+コンクリートと接着剤の界面の破壊+鋼床版と接着剤の界面の破壊

C : コンクリート内の破壊+コンクリートと接着剤の界面の破壊

D : コンクリートと接着剤の界面+鋼床版と接着剤の界面の破壊

E :コンクリートと接着剤の界面の破壊

F : 鋼床版と接着剤の界面の破壊

G : 冶具と接着剤の界面およびコンクリート上面と接着剤の界面の破壊

(a) No.1 (左側:コア,右側:鋼板) (材料破壊および凝集破壊)

(b) No.2 (左側:コア,右側:鋼板) (材料破壊および凝集破壊)

(c) No.3 (左側:コア,右側:鋼板) (材料破壊および凝集破壊)

写真-3.4.6 引張接着強度試験 試験後の状況(一般部)

(a) No.4(左側:コア,右側:鋼板) (材料破壊および凝集破壊)

(b) No.5 (左側:コア,右側:鋼板) (材料破壊および凝集破壊)

(c) No.6(左側:コア,右側:鋼板) (材料破壊および凝集破壊)

写真-3.4.7 引張接着強度試験 試験後の状況(ひび割れ部)

写真-3.4.8 一般部①の拡大断面図

写真-3.4.9 ひび割れ部④の拡大断面図

写真-3.4.10 ひび割れ部④の側面の観察状況

4. 耐久性を確認するための実橋調査

本章では SFRC 舗装の施工から約 15 年が経過した実橋において, SFRC 補強工法に用いた接着剤の引張接着強度試験および SFRC 舗装路面のひび割れ調査を行った結果を示す。

4.1 調査対象橋梁

調査対象橋梁と SFRC 舗装の仕様等を表-4.1.1 に示す。これらの橋梁で使用した接着剤は、SFRC 舗装マニュアル^{4.1)}で接着剤に求めている性能を確認したものである。なお、横浜ベイブリッジは新設時点から疲労対策として SFRC 舗装が採用されている。

橋梁名	横浜ベイブリッジ	大平高架橋	S 橋			
路線名	下層・国道 357 号	国道 50 号	国道			
供用時期	2004年	1985年	1986年			
SFRC 舗装 施工時期	2004年	2007年	2005年			
舗装厚	75mm	75mm	80~90mm			
接着剤	エポナンズム	エポナンズD	エポキシ系 A			
	エルイン示 A	エルインネ B	エポキシ系 B			
プライマー	有り	無し	無し			
スタッド	φ 9×40mm	φ 9×30mm	φ 9×40mm			
補強材	なし	CFRP グリッド	CFRP グリッド			
SFRC 舗装						
経過年数	16年	13 年	15 年			
※ 調査時						

表-4.1.1 SFRC 舗装の仕様等

4.1.1 国道 357 号 横浜ベイブリッジ 下層 (SFRC 舗装供用から約 16 年経過)

国道357号横浜ベイブリッジ(下層)^{4.2)}は3径間連続箱桁橋,7径間連続鋼鈑桁橋3連,6 径間及び7径間連続鋼鈑桁橋9連,6径間連続鋼鈑桁橋3連,4径間連続鋼箱桁橋から構成さ れる長大橋である。上層は首都高速道路株式会社が管理しており,1989年から供用されて いる。下層は国土交通省関東地方整備局が管理しており,2004年から国道357号として暫 定2車線で供用されている。下層の舗装について,当初設計時点では鋼床版で一般的に使 用されているグースアスファルト舗装を採用することが検討されていたが,当該橋は重量 が大きいコンテナ車等の大型車の交通が多い路線であるため,鋼床版の疲労耐久性の向上 を目的として,国内で初めてSFRC舗装が採用された。なお,採用にあたっては,(財)国 土技術研究センターに一般国道357号横浜ベイブリッジ鋼床版舗装検討委員会(委員長: 東京工業大学大学院 二羽教授)が設置され,SFRC舗装等の施工等に関する議論が行われ た^{4.3)}。下層のSFRC舗装の施工が2004年1月から2月に行われたため,凍結を懸念して,寒 中対策として真空脱水工法が採用されている。真空脱水工法は,コンクリートの打設直後, 真空ホースを取り付けた特殊真空マットパネルにより,コンクリート表面から水と空気を 取り去ると同時に大気圧をコンクリートにかけて締め固める工法である^{4.2)}。

SFRC舗装の施工から16年が経過した2020年10月に、実橋における引張接着強度を把握することを目的に、引張接着強度試験を行った。試験位置を図-4.1.1に示す。試験はダブルデッキ構造の下層であるため、雨水の影響は小さいと考えられる。また、未供用範囲であるため、自動車荷重を受けていない。また、横浜ベイブリッジのSFRC舗装に関する仕様等の詳細^{4.1)}を表-4.1.2に示す。

図-4.1.1 横浜ベイブリッジの試験位置

表-4.1.2 横浜ベイブリッジの SFRC 舗装の仕様等詳細(文献^{4.1)} 付属資料から引用)

①橋辺形式										
	6、7径間連続	鋼床版鈑桁	橋9連(3径間]連続鋼トラ	ス斜張橋剖	3分における	る二層構造の	の下層)		
②橋長	860.0m									
③支間長	鋼床版鈑桁橋	の平均支間	長 15m (鋼	トラス斜張橋	\$:200m+4	60m+200	m)			
④幅員	2.5m(路肩部))+3.5m(車	〔道部)+1.5r	n(中央帯)・	+ 3.5m (車	道部)+2.5	óm(路肩部)		
⑤曲線半径	直橋									
⑥横断勾配	2.00%									
⑦縦断勾配	$3.3\% \sim -3.3\%$	$3.3\%\sim$ -3.3%								
⑧デッキプレート厚	12mm									
⑨縦リブの形状寸法	U-300×220×6									
10縦リブ間隔	(箱桁内)主桁近傍 350mm, その他580mm									
	(箱桁外)主桁	近傍 350m	m、その他58	30mm						
⑪縦リブ支間	$2.100 \sim 2.150$)mm								
 ②服設の舗装構成 	新設でSFRC	/ 舗装を採用								
13建設年次	2004年(上層	は1989年)								
(4)対策年次	2004年	101100017								
(2) 綱床版の損復状況等										
1) 症 学 主 型 の 発 生 世 湿	新設のためき	えたり								
17波力さ表の光土八九		:衣なし								
(3)SFRC舗装の仕様等(複数	工区のフち一工区	.の例)								
1)舗装構成										
①SFRC舗装厚	75mm									
(2)接着材	エポキシ系接続	看材B								
③スタッド	$\phi 9 \times 40 \text{mm}$	打継目およ	び舗装端部	で300mm	間隔で設置	(縁から15	0mm)			
④補強材	なし									
2)配合条件										
①設計基準強度	30N/mm ² (材齢7日)									
②セメントの種類	早強ポルトラン	ドセメント(腸	影張材使用)							
③粗骨材の最大寸法	13mm(「JISA	45001道路	用砕石」を使	用)						
④スランプの範囲	8.0±2.5cm (筆	岡繊維混入征	後)							
⑤鋼繊維混入量	120kg/m ³									
⑥目標空気量	$5.0 \pm 1.5\%$									
3)使用材料及び示方配合										
	見論ポルトラン	ドヤイト								
(1)セメント	早強ボルトランドセメント									
①セメント②鋼繊維	デ シンコーファイ	バー すり.5	mm×30mm	o =7.85	「神鋼建材	工業(株)製	μŢ			
 ①セメント ②鋼繊維 ③細骨材 	シンコーファイ 0=2.57, 2.68	バー $\phi 0.5$: 3、F.M.=2.	mm×30mm 10. 3.40 [=	、ρ =7.85 千葉県市原	[神鋼建材 産. 高知県	「工業(株)製 鳥形山産]	Į]			
 ①セメント ②鋼繊維 ③細骨材 ④細骨材 ④細骨材 	$\rho = 2.57, 2.68$	$\phi = \phi = \phi = 0.5$ $\beta \in F.M.=2.$ $M.=- \in Gm$	mm×30mm 10, 3.40 [= ax=13 「埼 ⁻	、ρ =7.85 千葉県市原 玉県日高産	[神鋼建材 産, 高知県 1	工業(株)專 鳥形山産]	Į]			
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 	+ J国スパルトラン シンコーファイ ρ=2.57, 2.68 ρ=2.70、F.M AE減水剤ポン	$7 - \phi 0.5$ 8 + F.M.=2 M.=- + Gm M.=- + Gm	mm×30mm 10, 3.40 [= ax=13 [埼크	、ρ =7.85 千葉県市原 玉県日高産	[神鋼建材 産, 高知県]	工業(株)專 鳥形山産]	ĥ]			
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 	 ・ 」 ・ ンコーファイ ρ = 2.57, 2.68 ρ = 2.70、F.M AE減水剤ポン 示方配合 	バー φ0.5: 8、F.M.=2. I.=-、Gm リスNo.70	mm×30mm 10, 3.40 [= ax=13 [埼크	、ρ =7.85 千葉県市原 玉県日高産	[神鋼建材 産, 高知県]	工業(株)蓴 鳥形山産]	ĥ]			
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 	 シンコーファイ ρ=2.57, 2.68 ρ=2.70、F.M AE減水剤ポン 示方配合 水結合材比 	バー φ0.5 3、F.M.=2. A.=-、Gm リスNo.70 細骨材率	mm×30mm 10, 3.40 [[±] ax=13 [埼] 鋼繊維	、ρ =7.85 千葉県市原 玉県日高産	[神鋼建材 産, 高知県] 単の	工業(株) 鳥形山産] 7量(kg/m	3)		AE減水剤	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 	シンコーファイ ρ=2.57, 2.68 ρ=2.70、F.M AE減水剤ポン 示方配合 W/(C+EX)	バー φ0.5 3、F.M.=2. A.=-、Gm バリスNo.70 細骨材率 (s/a)	mm×30mm 10, 3.40 [² ax=13 [埼] 鋼繊維 混入量	、ρ=7.85 千葉県市原 玉県日高産 	[神鋼建材 産,高知県] <u>単位</u>	工業(株) 鳥形山産] 之量(kg/m 膨張材	2 3) (細骨材)		AE減水剤 ((C+FX)×%)	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 	 シンコーファイ ρ=2.57, 2.68 ρ=2.70、F.N AE減水剤ポン 示方配合 水結合材比 W/(C+EX) (%) 	バー φ 0.5: 8、F.M.=2. A.=-、Gm ジリスNo.70 細骨材率 (s/a)	mm×30mm 10, 3.40 [= ax=13 [埼] 鋼繊維 混入量 (kg/m ³)	、 ρ =7.85 千葉県市原 玉県日高産 水 W	[神鋼建材 産,高知県] <u>単伯</u> セメント C	工業(株) 鳥形山産] 立量(kg/m 形限材 FX	³) 細骨材 S	粗骨材 G	AE減水剤 ((C+EX)×%) Ad	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 	 シンコーファイ ρ=2.57, 2.68 ρ=2.70、F.N AE減水剤ポン 示方配合 水結合材比 W/(C+EX) (%) 46.5 	バー φ 0.5 3、F.M.=2. 4.=-、Gm ヴスNo.70 細骨材率 (s/a) (%) 60.0	mm×30mm 10, 3.40 [= ax=13 [埼] 鋼繊維 混入量 (kg/m ³) 120	、ρ=7.85 千葉県市原 玉県日高産 水 W 202	[神鋼建材 産,高知県] 単位 セメント C 404	工業(株) 鳥形山産] 立量(kg/m 膨張材 EX 30	³) 細骨材 S 939	粗骨材 G 649	AE減水剤 ((C+EX)×%) Ad 0.25	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 	 シンコーファイ ρ=2.57, 2.68 ρ=2.70、F.N AE減水剤ポン 示方配合 水結合材比 W/(C+EX) (%) 46.5 	バー φ 0.5: 8、F.M.=2. 4.=-、Gm ジリスNo.70 細骨材率 (s/a) (%) 60.0	mm×30mm 10, 3.40 [= ax=13 [埼 環 混入量 (kg/m ³) 120	、 <i>ρ</i> =7.85 千葉県市原 玉県日高産 水 W 202	[神鋼建材 産,高知県] <u>単位</u> セメント C 404	工業(株)集 鳥形山産] ^{[2} 量(kg/m 膨張材 EX 30	³) 細骨材 S 939	粗骨材 G 649	AE減水剤 ((C+EX)×%) Ad 0.25	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 	 シンコーファイ ρ=2.57, 2.68 ρ=2.70、F.N. AE減水剤ポン 示方配合 水結合材比 W/(C+EX) (%) 46.5 	バー φ 0.5: 3、F.M.=2. 4.=-、Gm ジレスNo.70 細骨材率 (s/a) (%) 60.0	mm×30mm 10, 3.40 [⁼ ax=13 [埼 混入量 (kg/m ³) 120	、ρ=7.85 千葉県市原 玉県日高産 水 W 202	[神鋼建材 産,高知県] ゼパント C 404	工業(株) 鳥形山産	³) 細骨材 S 939	粗骨材 G 649	AE減水剤 ((C+EX)×%) Ad 0.25	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 	 デムスレーファイ シンコーファイ ρ=2.57, 2.68 ρ=2.70、F.N. AE減水剤ポン 示方配合 水結合材比 W/(C+EX) (%) 46.5 	バー φ0.5: 3、F.M.=2. 4.=-、Gm リスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ	mm×30mm 10, 3.40 [⁼ ax=13 [埼三 環議維 混入量 (kg/m ³) 120 ローチ部が未	 、ρ=7.85 千葉県市原 玉県日高産 水 W 202 空たのため海 	[神鋼建材 産,高知県] ゼメント C 404 手上40mま ⁻	工業(株) 鳥形山産	³) 細骨材 S 939 トをポンプE	粗骨材 G 649 E送)	AE減水剤 ((C+EX)×%) Ad 0.25	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③可消力法 	 シンコーファイ <i>ρ</i>=2.57, 2.68 <i>ρ</i>=2.70、F.N. AE減水剤ポン 示方配合 水結合材比 W/(C+EX) (%) 46.5 新設のため規約 無し 	バー φ 0.5: 8、F.M.=2. 4.=-、Gm リスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ	mm×30mm 10, 3.40 [⁼ ax=13 [埼: 綱繊維 混入量 (kg/m ³) 120 ローチ部が未	、ρ=7.85 千葉県市原 玉県日高産 水 W 202 空のため海	[神鋼建材 産,高知県] セメント C 404 手上40mま ⁻	工業(株) 集形山産 (kg/m 歴 服 根 を	³) 細骨材 S 939 トをポンプE	粗骨材 G 649 E送)	AE減水剤 ((C+EX)×%) Ad 0.25	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③研掃処理 ④ 切換 	 デムスローファイ シンコーファイ =2.57, 2.68	バー φ0.5: 8、F.M.=2. 4.=-、Gm ジリスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ	mm×30mm 10, 3.40 [⁼ ax=13 [埼: 環入量 (kg/m ³) 120 ローチ部が未	、ρ=7.85 千葉県市原 玉県日高産 水 W 202 	[神鋼建材 産,高知県] ゼメント C 404 手上40mま ⁻	工業(株) 集形山産 (kg/m 膨張材 EX 30 でコンクリー	³) 細骨材 <u>S</u> 939 トをポンプE	粗骨材 <u>G</u> 649 E送)	AE減水剤 ((C+EX)×%) Ad 0.25	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③研掃処理 ④コンクリート供給	 デムスローファイ シンコーファイ =2.57, 2.68	バー φ0.5: 3、F.M.=2. 4.=-、Gm ジリスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ	mm×30mm 10, 3.40 [⁼ ax=13 [埼: 綱繊維 混入量 (kg/m ³) 120 ローチ部が未	、ρ=7.85 千葉県市原 玉県日高産 水 W 202 	[神鋼建材 産,高知県] ゼメント C 404 手上40mま ⁻	工業(株)集 鳥形山産]	³) 細骨材 <u>S</u> 939 トをポンプE	租骨材 G 649 E送)	AE減水剤 ((C+EX)×%) Ad 0.25	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 ④加工方法 ①交通規制 ②切削方法 ③研掃処理 ④コンクリート供給 ⑤養生 	 デムスローファイ シンコーファイ =2.57, 2.68	バー ϕ 0.5: 3、F.M.=2. A.=-、Gm γ リスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ 吉対策)+シ	mm×30mm 10, 3.40 [⁼ ax=13 [埼: 福森維 混入量 (kg/m ³) 120 ローチ部が未	、ρ=7.85 千葉県市原 玉県日高産 水 W 202 テテのため海	[神鋼建材 産,高知県] ゼメント C 404 手上40mま ⁻	工業(株)集 鳥形山産]	³) 細骨材 <u>S</u> 939 トをポンプE	租骨材 G 649 E送)	AE減水剤 ((C+EX)×%) Ad 0.25	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③研掃処理 ④コンクリート供給 ⑤養生 (4)その他	キーコッイ シンコーファイ ρ=2.57, 2.68 ρ=2.70、F.M. AE減水剤ポン 示方配合 水結合材比 W/(C+EX) (%) 46.5 新設のため規指 無し 1 種ケレン バックホウ 真空養生(凍紙	バー φ0.5. 3、F.M.=2. 4.=-、Gm リスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ 拮対策) + シ	mm×30mm 10, 3.40 [⁼ ax=13 [埼] 編繊維 混入量 (kg/m ³) 120 ローチ部が未	、ρ=7.85 千葉県市原 玉県日高産 水 W 202 テ テのため海	[神鋼建材 産,高知県] ^{単位} セメント C 404 手上40mま ⁻	工業(株)集 鳥形山産]	³) 細骨材 <u>S</u> 939 トをポンプE	租骨材 G 649 E送)	AE減水剤 ((C+EX)×%) Ad 0.25	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③研掃処理 ④コンクリート供給 ⑤養生 (4)その他 1)特記事項 	 デムボル・ファイ シンコーファイ タ=2.57, 2.68	バー φ0.5: 3、F.M.=2. 4.=-、Gm リスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ 岩対策)+シ 号横浜ベイ	mm×30mm 10, 3.40 [⁼ ax=13 [埼] 鋼繊維 混入量 (kg/m ³) 120 ローチ部が未 バート	 、 ρ =7.85 千葉県市原 玉県日高産 水 W 202 ⇒ ⇒ ⇒ ∞ <li< td=""><td>[神鋼建材 産,高知県] ^{単位} セメント C 404 手上40mま⁻ 委員会(委</td><td>工業(株) 鳥形山産</td><td>³) 細骨材 <u>8</u> 939 トをポンプE</td><td>租骨材 G 649 E送)</td><td>AE減水剤 ((C+EX)×%) Ad 0.25</td></li<>	[神鋼建材 産,高知県] ^{単位} セメント C 404 手上40mま ⁻ 委員会(委	工業(株) 鳥形山産	³) 細骨材 <u>8</u> 939 トをポンプE	租骨材 G 649 E送)	AE減水剤 ((C+EX)×%) Ad 0.25	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③研掃処理 ④コンクリート供給 ⑤養生 (4)その他 1)特記事項 	 デューファイ シンコーファイ タ=2.57, 2.68 AE減水剤ポン 水結合材比 水結合材比 水結合材比 <	バー φ0.5: 3、F.M.=2. 4.=-、Gm リスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ 岩黄策)+シ 号横浜ベイ ち、施工等に	mm×30mm 10, 3.40 [[±] ax=13 [埼: 鋼繊維 混入量 (kg/m ³) 120 ローチ部が未 ブリッジ鋼床り こついて検討。	、ρ=7.85 千葉県市原産 水 W 202 一 近舗装検討	[神鋼建材 産,高知県] ^{単位} セメント C 404 手上40mま ⁻ 委員会(委	工業(株)集 鳥形山産]	³) 細骨材 <u>S</u> 939 トをポンプE 淳一郎東コ	租骨材 G 649 E送)	AE減水剤 ((C+EX)×%) Ad 0.25	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③研掃処理 ④コンクリート供給 ⑤養生 (4)その他 1)特記事項 	 デューファイ シンコーファイ タ=2.57, 2.68 AE減水剤ポン 水結合材比 水結合材比 水結合材比 	バー φ0.5: 3、F.M.=2. 4.=-、Gm リスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ 貴横浜ベイ ち、施工等に 表表面にひて	mm×30mm 10, 3.40 [[±] ax=13 [埼: 鋼繊維 混入量 (kg/m ³) 120 ローチ部が未 ブリッジ鋼床り ついて検討。 び割れを確認	 、 ρ =7.85 千葉県市原産 水 W 202 テのため海 坂舗装検討 。ひび割れ 	[神鋼建材 産,高知県] ^{単位} セメント C 404 手上40mま ⁻ 委員会(委 幅は最大0	工業(株)集 鳥形山産]	³) 細骨材 <u>S</u> 939 トをポンプE 淳一郎東コ た。コア抜き	粗骨材 G 649 E送)	AE減水剤 ((C+EX)×%) Ad 0.25 ※教授)	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③研掃処理 ④コンクリート供給 ⑤養生 (4)その他 1)特記事項 	 デムスレーファイ シンコーファイ タ=2.57, 2.68 AE減水剤ポン 木結合材比 水結合材比 水結合材比 	 バーφ0.5: S.F.M.=2. M.=-、Gm (yスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ 制なし(アプ 古対策)+シ 号横浜ベイ ち、施工等に 支表面にひて ひび割れの 	mm×30mm 10, 3.40 [[±] ax=13 [埼: 鋼繊維 混入量 (kg/m ³) 120 ローチ部が未 ブリッジ鋼床り ついて検討。 が割れを確認)要因としては	、 ρ =7.85 千葉県市原産 水 W 202 テのため海 坂舗装検討 。ひび割れ網	[神鋼建材 産,高知県] ^{単位} セメント C 404 ほ上40mま ⁻ 委員会(委 幅は最大0 認施工方法	工業(株)集 鳥形山産] <u> 注量(kg/m</u> 膨張材 <u> EX</u> 30 でコンクリー 員長:丹羽 .3mm程度の (粗骨材の	³) 細骨材 <u>S</u> 939 トをポンプE 淳一郎東コ た。コア抜き計	粗骨材 G 649 E送) E(大大学院 調査(により に伴う単(AE減水剤 ((C+EX)×%) Ad 0.25 ※教授) 、貫通ひび 立水量、真	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③研掃処理 ④コンクリート供給 ⑤養生 (4)その他 1)特記事項 	 デムホレファイ シンコーファイ タ=2.57, 2.68 ホネコーファイ マンコーファイ マーの、アイ アイ アイ アーの、シーン・シーン マーの、シーン・シーン アーの、シーン・シーン アーン・シーン アーン・シーン アーン・シーン アーン・シーン アーン・シーン アーン・シーン アーン・ アーン・ <!--</td--><td> バーφ0.5: 3、F.M.=2. 4.=-、Gm ジスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ 制なし(アプ 貴横浜ベイ ち、施工等に 支のび割れの ネル配置、表 </td><td>mm×30mm 10, 3.40 [[±] ax=13 [埼: 鋼繊維 混入量 (kg/m³) 120 ローチ部が未 ブリッジ鋼床り ついて検討。 ジ調れを確認。 そこしては そういてて検討。</td><td> 、 ρ =7.85 千葉県市原産 水 W 202 テのため海 坂舗装検討 。ひび爆収新 なビング>0 </td><td>[神鋼建材 産,高知県] ^{単位} セメント C 404 手上40mま⁻ 委員会(委 幅は最大0 記施工方波 の有無)等か</td><td>工業(株)集 鳥形山産] 注量(kg/m 膨張材 EX 30 でコンクリー 員長:丹羽 鳥m 程度の ご単げられる</td><td>³) 細骨材 S 939 トをポンプE 淳一郎東工 た。コア抜き計 の種類とそれ 5。全般的に</td><td>粗骨材 G 649 E送) E(より) に大大学院 調査により に伴う単行 には健全な</td><td>AE減水剤 ((C+EX)×%) Ad 0.25 ※教授) 、貫通ひび 立水量、真 状態を保</td>	 バーφ0.5: 3、F.M.=2. 4.=-、Gm ジスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ 制なし(アプ 貴横浜ベイ ち、施工等に 支のび割れの ネル配置、表 	mm×30mm 10, 3.40 [[±] ax=13 [埼: 鋼繊維 混入量 (kg/m ³) 120 ローチ部が未 ブリッジ鋼床り ついて検討。 ジ調れを確認。 そこしては そういてて検討。	 、 ρ =7.85 千葉県市原産 水 W 202 テのため海 坂舗装検討 。ひび爆収新 なビング>0 	[神鋼建材 産,高知県] ^{単位} セメント C 404 手上40mま ⁻ 委員会(委 幅は最大0 記施工方波 の有無)等か	工業(株)集 鳥形山産] 注量(kg/m 膨張材 EX 30 でコンクリー 員長:丹羽 鳥m 程度の ご単げられる	³) 細骨材 S 939 トをポンプE 淳一郎東工 た。コア抜き計 の種類とそれ 5。全般的に	粗骨材 G 649 E送) E(より) に大大学院 調査により に伴う単行 には健全な	AE減水剤 ((C+EX)×%) Ad 0.25 ※教授) 、貫通ひび 立水量、真 状態を保	
 ①セメント ②鋼繊維 ③細骨材 ④粗骨材 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③研掃処理 ④コンクリート供給 ⑤養生 (4)その他 1)特記事項 	 デューファイ シンコーファイ タ=2.57, 2.68 AE減水剤ポン 木結合材比 水結合材比 水結合材比 <!--</td--><td> バーφ0.5: 3、F.M22. 4.=-、Gm ジスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ 制なし(アプ 貴横浜ベイ 支板正等に 支び割れの 表面にひて ネル配置、調 </td><td>mm×30mm 10,3.40 [[±] ax=13 [埼: 鋼繊維 混入量 (kg/m³) 120 ローチ部が未 ブリッジ鋼床り ついて検討。 認知を確認。 シ要因仕上げくろ 査を継続中。</td><td>、 ρ =7.85 千葉県市原産 水 W 202 テのため液 坂舗装検討 。ひび割れ称 ないピング>0</td><td>[神鋼建材 産,高知県] ^{単位} セメント C 404 ほ上40mま⁻ で 委員会(委 幅は最大0 記施工方波 の有無)等か</td><td>工業(株)集 鳥形山産]</td><td>³) 細骨材 S 939 トをポンプE 淳一郎東コ た。コア抜き計 の種類とそれ 5。全般的に</td><td>粗骨材 G 649 E送) に大大学院 調査により に伴う単作 には健全な</td><td>AE減水剤 ((C+EX)×%) Ad 0.25 ジ教授) 、貫通ひび 立水量、真 状態を保</td>	 バーφ0.5: 3、F.M22. 4.=-、Gm ジスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ 制なし(アプ 貴横浜ベイ 支板正等に 支び割れの 表面にひて ネル配置、調 	mm×30mm 10,3.40 [[±] ax=13 [埼: 鋼繊維 混入量 (kg/m ³) 120 ローチ部が未 ブリッジ鋼床り ついて検討。 認知を確認。 シ要因仕上げくろ 査を継続中。	、 ρ =7.85 千葉県市原産 水 W 202 テのため液 坂舗装検討 。ひび割れ称 ないピング>0	[神鋼建材 産,高知県] ^{単位} セメント C 404 ほ上40mま ⁻ で 委員会(委 幅は最大0 記施工方波 の有無)等か	工業(株)集 鳥形山産]	³) 細骨材 S 939 トをポンプE 淳一郎東コ た。コア抜き計 の種類とそれ 5。全般的に	粗骨材 G 649 E送) に大大学院 調査により に伴う単作 には健全な	AE減水剤 ((C+EX)×%) Ad 0.25 ジ教授) 、貫通ひび 立水量、真 状態を保	
 ①セメント ②鋼繊維 ③細骨材 ④祖骨材 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③研掃処理 ④コンクリート供給 ⑤養生 (4)その他 1)特記事項 2)参考文献	 ・一般国道357 において帯 ・一般国道357 において構築 	 バーφ0.5: 3、F.M.=2. 4.=-、Gm リスNo.70 細骨材率 (s/a) (%) 60.0 樹なし(アプ 特横浜ベイに 表面にいての ネル配して、表面にいて、 ないの配置、調調 (C舗装による 	mm×30mm 10, 3.40 [[±] ax=13 [埼: 鋼繊維 混入量 (kg/m ³) 120 ローチ部が未 ブリッジ鋼床り。 ついて検討。認 同田としてはくう 査を継続中。。 鋼床版の疲労	、 ρ =7.85 千葉県市原産 水 W 202 売のため海 坂舗装検討 。ひび割れ称 シビング>0 ・ 損傷対策、	[神鋼建材 産,高知県] ^{単位} セメント C 404 ほ上40mま ⁻ で委員会(委 幅は最大0 記施工方海 (委 の) であった。 (委	工業(株) 鳥形山産	³) 細骨材 S 939 トをポンプE 淳一郎東コ た。コア抜き う種類とそれ 5。全般的に	粗骨材 G 649 E送) E大大学院 調査により に伴う単行 には健全な	AE減水剤 ((C+EX)×%) Ad 0.25 (*教授) 、貫通ひび 立水量、真 状態を保	
 ①セメント ②鋼繊維 ③細骨材 ④祖骨材 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③研掃処理 ④コンクリート供給 ⑤養生 (4)その他 1)特記事項 2)参考文献	 シンコーファイ <i>ρ</i> = 2.57, 2.66 <i>ρ</i> = 2.70、F.M AE減水剤ボン 示方配合 水結合材比 W/(C+EX) (%) 46.5 新設のため規 (%) 46.5 新設のため規 (%) 46.5 ・一般国道357 において構造 ・一般国道357 において構造 ・一般国道357 において構造 ・一般国道357 において構造 ・一般国道357 において構造 ・一般国道357 において構造 ・一般国道557 において構造 ・一般国道557 において構造 ・一般国道557 において構造 ・一般国道557 において構造 ・一般国道557 において構造 ・一般国道557 において構造 	 バーφ0.5.3 、F.M22.4 A.=-、Gm ジスNo.70 細骨材率 (s/a) (%) 60.0 制なし(アプ 封策)+シ 号横浜でくに 麦ひび配割のの よ調 に結美鋼床床 	mm×30mm 10, 3.40 [[±] ax=13 [埼: 鋼繊維 混入量 (kg/m ³) 120 ローチ部が未 ブリッジ鋼床り。 ついて検討。 認知としてはくう 査を継続中。。 第 鋼床版の疲労 5 舗装・鋼とコン	 、 ρ =7.85 千葉県市原産 水 W 202 完のため海 版舗装検討 。ひび燥収新 ンピング>0 損傷対策、 ・クリートの新 	[神鋼建材 産,高知県] ^{単位} セメント C 404 手上40mま ⁻ で く委員会(委 は最工方等) 等の ほどあんの (そしい関係-、)	工業(株) 二	³) 細骨材 S 939 トをポンプE 淳一郎東コ た。コア抜き計 の種類とそれ 5。全般的に 3 2005年8月	粗骨材 G 649 E送) E大大学院 調査により には健全な	AE減水剤 ((C+EX)×%) Ad 0.25 芝教授) 、貫通ひび 立水量、真 状態を保	
 ①セメント ②鋼繊維 ③細骨材 ④祖骨材 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③研掃処理 ④コンクリート供給 ⑤養生 (4)その他 1)特記事項 2)参考文献	 シンコーファイ <i>ρ</i>=2.57, 2.66 <i>ρ</i>=2.70、F.M AE減水剤ボン 示方配合 水結合材比 W/(C+EX) (%) 46.5 新設のため規律 無し 1種ケレン バックホウ 真空養生(凍系 ・一般国道357 において構造 ・一般国道357 において構造 ・1に舗装 割れを確認。 空養生のパニ 持しており、彩 1)加形ら:SFR 2)西川:SFRC 3) 井出:SFRC 	$i = - \phi 0.5$: $i = - \phi 0.5$: $3 \in F.M.=2-$, $3 \in F.M.=2-$, $4 = - \langle Gm$ $i = - \langle Gm$ i =	mm×30mm 10, 3.40 [[±] ax=13 [埼: 鋼繊維 混入量 (kg/m ³) 120 ローチ部が未 ブリッジ鋼床り。 ついて検討。認 同本記ににくろ 重御法に働いてはる。 の疲労型 によいの疲労型	 、ρ=7.85 千葉県市原産 水 W 202 完のため海 版舗装検討 。ひび燥収約 たビング>0 損傷対策, バリートの親果、平 	[神鋼建材 産,高知県] ^{単位} セメント C 404 手上40mま ⁻ で く 委員会(委 は起工)の 痛いい男年度国 の に の の の の の の の の の の の の の の の の の	 工業(株)集 鳥形山産] 注量(kg/m 膨張材 EX 30 でコンクリー 員長:丹羽 .3mm程度材の .3mm程度材の .2004年10月 橋梁と基礎 土交通省国 	³) 細骨材 S 939 ・ トをポンプE 淳一郎東コ た。コア抜き計 の種類とそれ 5。全般的に 1 2005年8月 土技術研究	粗骨材 G 649 E送) E大大学院 調査により には健全な 会、2006年	AE減水剤 ((C+EX)×%) Ad 0.25 芝教授) 、貫通ひび 立水量、真 状態を保	
 ①セメント ②鋼繊維 ③細骨材 ④祖骨材 ⑤減水剤 4)施工方法 ①交通規制 ②切削方法 ③研掃処理 ④コンクリート供給 ⑤養生 (4)その他 1)特記事項 2)参考文献	 シンコーファイ <i>ρ</i> = 2.57, 2.68 <i>ρ</i> = 2.70、F.M AE減水剤ボン 示方配合 水結合材比 W/(C+EX) (%) 46.5 新設のため規(無し 1 種ケレン バックホウ 真空養生(凍線 ・一般国道357 において構造 ・一般国道357 において構造 ・1に舗装 割れを確認。 空養生のパ2 持しており、彩 1)加形ら:SFR 2)西川:SFRC 3)井出:SFRC 4)児玉ら:SFR 	$i^{-} \phi 0.5$: δ 、F.M.=2-、Gm $j^{-} \gamma \sqrt{2} \sqrt{2}$ $a_{1}=-$ 、Gm $i^{-} \gamma \sqrt{2} \sqrt{2} \sqrt{2}$ $a_{1}=-$ 、Gm $i^{-} \gamma \sqrt{2} \sqrt{2}$ $a_{1}=-$ 、Gm $i^{-} \gamma \sqrt{2}$ $a_{1}=-$ 、Gm $i^{-} \gamma \sqrt{2}$ $a_{1}=-$ 、Gm $i^{-} \gamma \sqrt{2}$ $a_{1}=-$ 、Gm $i^{-} \gamma \sqrt{2}$ $i^{-} \gamma \sqrt{2}$ $i^$	mm×30mm 10,3.40 [[±] ax=13 [埼: 	 、 ρ =7.85 千葉県市原産 水 W 202 完のため海 版舗装検討 。 ひび燥びきの ・ 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	[神鋼建材 産,高知県 単位 セメント C 404 手上40mま 委員会(委 した方等の 痛しい異年(12) 成18年(第12)	 工業(株)集 鳥形山産] 注量(kg/m 膨張材 EX 30 でコンクリー 員長:丹羽 .3mm程度材の .3mm程度材の 2004年10月 橋土交通省国 調納にに 	³) 細骨材 S 939 ・ トをポンプE 淳一郎東コ た。コア抜き計 の種類とそれ 5。全般的に 1 、2005年8月 土技術研究ボ	粗骨材 G 649 E送) E大大学院 調査により には健全な 会、2006年 ジウム論文	AE減水剤 ((C+EX)×%) Ad 0.25 芝林量、真 状態を保 10月 二報告集	

4.1.2 国道 50 号 大平高架橋 上り線 (SFRC 舗装供用から約 13 年経過)

国道50号大平高架橋は1985年から供用されている。供用後,鋼床版に疲労損傷が見られ たため, 亀裂発生箇所に進展抑制のための対策(当て板等)を施工したうえで,2007年10 月に抜本的な疲労亀裂の対策としてSFRC舗装が敷設されている。

SFRC舗装の施工から13年が経過した2020年10月に、実橋における引張接着強度を把握することを目的に、引張接着強度試験を行った。横浜ベイブリッジと大平高架橋はそれぞれ異なる接着剤を使用している。試験位置を図-4.1.2に示す。大平高架橋のSFRC舗装に関する仕様等の詳細^{4.1)}を表-4.1.3に示す。交通状況は2015年センサスで日交通量約29,000台

(24時間),大型車混入率は32%である。なお,2014年度にSFRC舗装表面に凍結防止を目 的とした樹脂舗装が敷設されている。

図-4.1.2 大平高架橋の試験位置

(1)対象橋梁の構造諸元等									
①橋梁形式	3径間連続鋼床	版箱桁橋							
②橋長	147.0m								
③支間長	40m + 56m	50m	(1-)+++						
④ 喘貞	8.25m(里坦音 古香	心) + 3.0m	1(歩進部)						
し田稼干住	旦橋 200%								
⑦縦断勾配	0.30%								
(1)秋日 ちに (8)デッキプレート厚	12mm								
⑨縦リブの形状寸法	U-320×200×8								
回縦リブ間隔	主桁近傍 400n	nm、その	他600mm						
⑪縦リブ支間	$2,500 \sim 2,800$	nm							
12既設の舗装構成	(表層) 改質ア	、スファルト	35 mm						
	(基層)改質ア	スファルト	40mm						
	(防水層)シー	·卜系防水層	2mm						
13)建設年次	1983年								
国対東年次	2007年								
(2) 鋼床版の損傷状況等	いまたが	00株式 3	も古法回けれる	1. TH 22 H		三 (株1)ー)	· * * * * 0	の株式に	
1)疲労さ裂の発生状況	ヒート貝迪さ殺	99 固 川、当	世里 相則材 (上端俗は	(司) 40 固)	町、恞リノ	父左部3	b 固 川	
2)さ裂への対処	ビート員通さ殺 キ烈長さが400	: アッキ 進身	長さ裂の有悪 	そ唯認う	る日的で	さ殺允端	部に観祭 #署	北を則れ、	•
	さ表抜さが4001	mm以上の	の (1)	CILLAUN	_加えて目	日(似を設	〔旦		
(3)SFRU翻接の仕様寺(複数)	の他上 範囲のりら-	一他上眼囲	()191])						
	~~								
①SFRC舗装厚	75mm								
(2) 接着材	エホキシ糸接着	i材A(フラ	アイマーを併り	书)					
③スタッド	φ9×30mm、ቻ	丁継目および	び舗装端部で	300mm	間隔で設	置(縁から	5150mm	1)	
④補強材	CFRPグリッド	CR10, 10	0×100mm‡	各子、主桁	<u> </u>	に1m幅で	で設置		
2)配合条件									
①設計基準強度	30N/mm ² (材齢	7日)							
②セメントの種類	早強ポルトラント	・セメント(臆	『張材使用)						
③粗骨材の最大寸法	13mm(「JISA	5001道路	用砕石」を使	用)					
④スランプの範囲	6.5±1.5cm (鋼	繊維混入征	爰)						
⑤鋼繊維混入量	120 kg/m 3								
⑥目標空気量	5.0±1.5% (鋼	繊維混入後	爰)						
3)使用材料及び示方配合									
のセメント	早確ポルトラント	ドヤメント (5=3.13 「住	友大阪ヤ	メント(株)	し			
② 鋼繊維	シンフーファイ)		, 5 0.10 [正 5 mm×30mm	「抽綱建	********	₄<)」 集)) 劃]			
③細骨材	ひつ 2007 - 2003	FM = 3.0	1111、5011111	と野古産	://()]	1/22]			
	40 (10) (10) (10) (10) (10) (10) (10) (10	; r.m0.0 :0 FM-1	1 00 「千芚」	正式 市座]				
①相告な	· 加白ψ ρ=2.0	264 Cm	1.50 [朱	ホイ可座. ト目首 上町	」 IT 茶 1				
(1) 11 月 17 (1) 11 月 17	使員10石 μ=	Δ.04, GΠα 玄真歴能Λ	ux—io [1加/ D油水文 「D	いが肉生。	リ/生」 1フ (姓)制	17			
③颅水角	ハリカノレハン酸	不同性肥A.	ロ(吸)小剤 しロ	ASFM/S	/へ(杯)影	:]			
	示方配合					-	0.		
	水結合材比	細骨材率	鋼繊維		単位	ī量(kg/ı	m°)		AE減水剤
	W/(C+EX)	(s/a)	混人量	水	セメント	膨張材	細骨材	粗骨材	$((C+EX)\times\%)$
	(%)	(%)	(kg/m ³)	W	С	EX	S	G	Ad
	43.0	57.9	120	175	387	20	956	700	1.6
4)施工方法			*****						
①交通規制	全面交通止め	約1ヶ月間	(上下線分離	推構造であ	るため、イ	也線に切り)廻すこと	ができた)	
②切削方法	切削機+人力-	+ウォータ-	ージェット						
③研掃処理	1種ケレン								
④コンクリート供給	バックホウ								
⑤養生	シート								
(4)その他									
1)特記事項	・デッキプレート	表面にシー	-卜系防水層:	が設置され	しており、	ショットブ	ラストによ	る研掃でに	は除去が
	困難であった	ため、ウォー	ータージェット	・によりこオ	しを除去し	た。			
	・デッキプレート	表面を研握	 してから接着	皆材を塗れ	下するまて	期間の発	錆を防止	:する目的	で、研掃
	後にプライマー	ーが塗布され	れている。						
	・SFRC舗装前後	後で活荷重	によるひずみ	、および3	ヶ月間の	乾燥収縮	を計測し	、SFRC舗	装の効
	果を確認								
2)参考文献	1) 児玉ら: SFRC	舗装による	鋼床版の疲労	耐久性向	上対策、第	12回 鋼と	橋に関す	るシンポジ	ウム論文報告集
	、2009年8月					a			
	2) 児玉ら:大平高	高架橋の鋼尿	F版におけるS	FRC舗装	によるひす	"み低減効	果、第六	可道路橋床	版シンポジウム
	論文報告集、2	2008年6月		ht	We ac	N .) ±1.//~ '	. < ==		
	3) 山田ら: SFR(」を用いた鋼	l体版疲労対象	〒二事例、]	第62回セ>	いト技術ナ	、会講演要	と言、2008年	+ 5月

表-4.1.3 大平高架橋のSFRC舗装の仕様等詳細(文献^{4.1)} 付属資料から引用)
4.1.3 S橋(SFRC舗装供用から約15年経過)

S橋は、1986年に供用されており、30年以上が経過している。1999年に鋼床版に疲労亀 裂が確認されており、鋼床版の部分取替、デッキ進展亀裂を対象とした当て板補強、走行 車線位置の変更、溶接補修等の様々な対策が行われている。2005年10月末から12月中旬の 約2ヶ月にわたって、夜間全面通行止めのもとでSFRC舗装の施工が行われている。施工時 間の制約から、既設のアスファルト舗装を撤去して仮舗装を行う1次施工と、仮舗装を撤 去して超速硬コンクリートを用いたSFRCを舗設する2次施工の2段階に分けて施工された。

SFRC舗装の施工から15年が経過した2020年11月に、実橋におけるひび割れ等の状況を把握することを目的に、SFRC舗装路面のひび割れ調査を行った。また、S橋のSFRC舗装に関する仕様等の詳細^{4.1)}を表-4.1.4に示す。

表-4.1.4 S橋の SFRC 舗装の仕様等詳細(文献^{4.1)} 付属資料から引用)

(1)対象橋梁の構造諸元等								
①橋梁形式	3径間連続鋼床版箱桁橋 2連							
②橋長	530.1m(鋼床版橋部分)							
 ③支間長 	3@88.0m + 3@88.0m							
④幅員	8.0m(車道部)+3.5m(歩道部)							
⑤曲線半径	直橋							
⑥横断勾配	2.00%							
⑦縦断勾配	$2.5\%{\sim}1.4\%$							
⑧デッキプレート厚	$12\sim 20$ mm							
⑨縦リブの形状寸法	U-320×250×8-R40							
⑩縦リブ間隔	(箱桁内)主桁近傍 420mm、その他580mm							
	(箱桁外)主桁近傍 490mm、その他630mm							
(1)縦リブ支間	2.750mm							
⑩既設の舗装構成	(表層) 改質アスファルト40mm							
	(基層) 改質アスファルト30mm							
	(防水層) シート系防水層							
(3)建設年次	1986年							
(4)対策年次	2005年							
(2) 鋼床版の損傷状況等								
1)疲労き裂の発生状況	デッキ進展き裂 322箇所、ビード貫通き裂 122箇所、垂直補剛材の上端溶接部20箇所							
2)き裂への対処	デッキ貫通き裂を生じた1箇所において鋼床版の部分取り巻えを実施							
-) e & (), () e	デッキ進展を裂つうた。その深さが6mm以上と推定される98箇所について当て板補強を実施							
	ビード貫通き裂についてけ、淡接種修を実施							
(3)SFRC(3)SFRC(4)(4)(5)(5)(5)(6)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)	て 「 実通し 気に ジー くはく 市 波 曲 タビスル ピー							
1) 鋪达構成								
①SFRC编述厚	80~90mm(肝左のアスファルト紳装厚に合わせた。設計上のアスファルト紳装厚け70mm)							
②接着材								
③スタッド	ーベック / JUG 1917							
の補強材								
	CFRI / 597F 100×100mm情)、t=0mm、主面C版直							
2)配合条件								
(1)設計基準強度	24N/mm*(材齢3時間)							
②セメントの種類	超速硬セメント							
③粗骨材の最大寸法	20mm							
④ スランプの範囲	5.0±1.5cm(鋼繊維混入後)							
⑤鋼繊維混入量	100kg/m^3							
⑥目標空気量	(超速硬セメントを用いたため未設定)							
3)使用材料及び示方配合								
のセメント	マイルドジェットセメントスーパー、0=2.98 「住友大阪セメント(株)製]							
②鋼繊維	$2 = 7 = 7 = 7 = 60.5 \text{ mm} \times 30 \text{ mm}, \rho = 7.85$ [Height T $\sharp(k)$]							
③細骨材	$a = 2.58$, FM = 2.63 [\ddot{z} th latit \ddot{r} \ddot{a}]							
④相骨材	a = 2.71 FM = 6.78 Gmax=20 [<i>m</i> /m/s/m/s]							
⑤减水剂	$p = 2.1.1$, r_1 , r_2 , r_1 , r_2 , r							
6)凝结遅延剂	$\begin{bmatrix} - - - - - - - $							
创始相连运用								
	水でメント比 神骨材学 鋼繊維 単位重(kgm) 高倍能視水剤 敏結建速剤							
	(W/C) (\$/a) 混入重 水 七文/卜 細骨材 粗骨材 (C×%) (C×%)							
	$(\%)$ $(\%)$ (kg/m^2) W C S G Ad							
	40.5 52.4 100 164 405 891 850 2.0 0.5							
4)施工方法								
①交通規制	夜間の全面交通止め 21時~翌朝6時							
②切削方法	1次:切削機+人力+ウォータージェット、2次:仮舗装撤去							
③研掃処理	1種ケレン							
④コンクリート供給	横ベルコン							
⑤養生	シート							
(4)その他								
1)特記事項	・デッキプレート表面にシート系防水層が設置されており、ショットブラストによる研掃では除去							
	が困難であったため、ウォータージェットによりこれを除去した。							
	・その他の疲労損傷対策として、走行車線を変更した。							
	・SFRC舗装前後で活荷面によろひずみを計測し、SFRC舗装の効果を確認							
	(注意)を見ていた。 (11) ないない (12) (11) ないない (11) ないない (11) ないない (11)							

4.2 実橋の引張接着強度試験

SFRC舗装マニュアル^{4.1})では,接着剤の性能確認試験として,せん断強度試験,引張接 着強度試験,疲労試験が示されている。実橋でせん断強度試験や疲労試験を行うことは, 構造物に与える影響が大きく,長期間の交通規制が必要であるために実施困難である。本 項では,構造物に与える影響が限定的であり,1日の交通規制で実施可能な引張接着強度 試験により実橋での耐久性を評価する。

引張接着強度試験について、SFRC舗装マニュアル^{4.1})では試験の評価目安として、載荷時の破壊形態で評価することが示されている。評価は、「接着剤とSFRCとの混合層あるいはSFRCでの破壊の面積割合が90%以上」であることが定められている。また、SFRC舗装マニュアル^{4.1}の付属資料では、施工管理の評価として、3体の引張接着強度の平均が

「1.0N/mm²以上」であることを良否の目安とすることが示されている。

ここでは,実橋における接着剤の強度を確認することを目的に,引張接着強度試験の破 壊形態および引張接着強度の結果を示す。

4.2.1 試験位置

(1) 国道 357 号 横浜ベイブリッジ

国道 357 号横浜ベイブリッジの詳細な試験位置を図-4.2.1 に示す。試験位置は以下の条件で選定した。

・SFRC 舗装を構成するスタッドジベルと試験位置が干渉しない位置 既設鋼床版と SFRC 舗装を一体化する接着剤の引張接着強度を確認することが目的であ るため、スタッドジベルに干渉しない位置とした。

・橋軸方向における位置:負曲げ域と想定する位置(橋脚支点)

負曲げ域はひび割れの発生が懸念されるため,橋脚支点上付近の位置を選定した。なお, 試験位置ではひび割れが表面上に発生していないことを目視で確認した。

・橋軸直角方向における位置:Uリブ内部の位置

局部応力や局部変形が生じるために,引張接着強度が低下すると推察されるため,Uリ ブ内部の位置を選定した。

(2) 国道 50 号 大平高架橋

国道 50 号大平高架橋の詳細な試験位置を図-4.2.2 に示す。試験位置は、以下の条件に 合致する位置を選定した。

・SFRC 舗装を構成するスタッドジベルと試験位置が干渉しない位置

既設鋼床版と SFRC 舗装を一体化する接着剤の引張接着強度を確認することが目的であるため、スタッドジベルに干渉しない位置とした。

・橋軸方向における位置:負曲げ域と想定する位置(橋脚支点)

負曲げ域はひび割れの発生が懸念されるため、橋脚支点上付近の位置を選定する。なお、 主桁直上には補強材が施工されているために選定しなかった。

・橋軸直角方向における位置:Uリブ内部の位置,かつ,輪荷重が作用する直下の位置 局部応力や局部変形が生じるために,引張接着強度が低下すると推察されるため,輪荷 重直下の位置,かつ,Uリブ内部の位置を選定した。

・交通規制帯内で試験を安全に実施できる位置

(a) 側面図

(b) 平面図

(c)断面図 図-4.2.2 大平高架橋の詳細試験位置

4.2.2 試験方法

(1) 事前調査

試験位置を検討するために事前調査を行った。試験位置について、事前に竣工図を確認 し、スタッドジベルおよび補強材(CFRP)に干渉しない位置を候補として選定した。事前 調査においては、竣工図で確認した位置で鉄筋探査機を使用し、試験位置にスタッドジベ ル等の異物が無いことを確認した。それらの確認を行ったうえで、想定する引張接着強度 試験の位置をスプレーでマーキングした(**写真-4.2.1**)。

(a) 横浜ベイブリッジのマーキング (b) 大平高架橋のマーキング 写真-4.2.1 事前調査(マーキング)

(2) 引張接着強度試験

事前調査でマーキングした試験位置に,手押しの切削機械(写真-4.2.2)によりφ80 mm とφ100 mmのコア切削を行った(写真-4.2.3)。横浜ベイブリッジで実施した試験結果より, φ80 mmの試験が試験の着眼点に合致した破壊形態であることを踏まえて,大平高架橋では φ80mmのみを採用した。

本試験は、既設鋼床版と SFRC 舗装の接着剤を対象とした試験である横浜ベイブリッジ では ϕ 80 mmの試験を 5 箇所、 ϕ 100 mmの試験を 5 箇所で実施した。SFRC 舗装マニュアル ^{4.3)}は ϕ 100 mmの試験が標準であるが、 ϕ が大きいほどに載荷時の引張荷重値が大きくなる ため、既設鋼床版と SFRC 舗装を一体化する接着剤ではなく、SFRC 舗装と試験治具を一 体化する接着剤での破壊形態となる事例が既往の研究 ^{4.4)}より確認されている。このため、 横浜ベイブリッジでは ϕ 80mm の試験を実施し、載荷時の引張荷重値を小さくすることで、 既設鋼床版と SFRC 舗装を接合する接着剤での破壊形態となるように工夫した。なお、コ ア切削が鋼床版まで到達していることは目視で確認した。

コア切削後,ディスクグラインダで研掃(写真-4.2.4)し,格子状に切込みを設けた (写真-4.2.5)。格子状の切り込みによって治具用接着剤の付着面積が増えるため,治具 用接着剤での破壊を防ぐことを目的に施工した。大平高架橋では,ディスクグラインダに よる施工で走行車両に影響を与えないように目隠し板を設置した(写真-4.2.4(b))。

写真-4.2.2 手押しの切削機械

写真-4.2.3 切削状況(横浜ベイブリッジ)

(a) 横浜ベイブリッジの研掃状況 (b) 大平高架橋の研掃状況 写真-4.2.4 ディスクグラインダによる研掃

写真-4.2.5 ディスクグラインダにより格子状に切り込みを設けた状況

治具用接着剤を SFRC 及び治具(軸径 φ 10mm,厚さ 19mm)に塗布し(写真-4.2.6), 一体化させた(写真-4.2.7)。治具と SFRC 舗装の接着を確実にするために養生を行った。 横浜ベイブリッジは未供用区間を対象としており,作業時間の制限がないために1日目に 治具の接着まで行い,翌日までの期間を治具用接着剤の硬化時間とし,2日目に引張接着 強度試験および復旧作業を実施した。大平高架橋は交通規制の制約条件があるため,硬化 時間は3時間となっている。養生の際には,治具が走行車両等の振動の影響によって動か ないように固定した(写真-4.2.8)。

写真-4.2.6 治具用接着剤の塗布状況

写真-4.2.7 治具接着状況

(a) 横浜ベイブリッジの固定状況

 三直-4.2.8

(b) 大平高架橋の固定状況

写真-4.2.8 治具用接着剤の固定状況

引張接着強度試験は,SFRC 舗装とデッキプレートの接着剤接合面が破壊するまで載荷 し,破壊時の引張荷重値を計測した。この引張荷重値をコアの断面積(実測値)で除した 値を引張接着強度とした。試験は建研式接着力試験器を用い,一定の載荷速度 (0.1MPa/sec)となるようにストップウォッチを確認しながら,同一作業者が全ての試験 を行った(写真-4.2.9)。

(a) 横浜ベイブリッジ(b) 大平高架橋写真-4.2.9 引張接着強度試験の実施

(3) 引張接着強度試験のコア抜き取り箇所の復旧

コア内や鋼床版上のガラや埃,水分を除去し所定量の接着剤(高耐久エポキシ系接着 剤)を塗布した(写真-4.2.10)。その後,超速硬性無収縮モルタルをコア内に充填させ (写真-4.2.11),表面は金ゴテ仕上げをした。また,大平高架橋ではデュロメーターによ り一定の硬度を確保していることを確認(写真-4.2.12)してから交通開放を行った。ま た,大平高架橋の表層はすべり止め舗装(黒色)のため,モルタル表面をディスクグライ ンダで研掃した後(写真-4.2.13),黒スプレーでモルタル表面を色付けした(写真-4.2.14)。それぞれの橋梁における復旧状況を写真-4.2.15に示す。

写真-4.2.10 接着剤の塗布状況

写真-4.2.11 モルタルの充填状況

写真-4.2.12 デュロメーターによる確認

写真-4.2.13 ディスクグラインダ研掃

写真-4.2.14 スプレーによる施工

(a)横浜ベイブリッジ

(b) 大平高架橋

写真-4.2.15 復旧状況

4.2.3 試験結果

引張接着強度試験について、横浜ベイブリッジの結果を表−4.2.1 に、大平高架橋の結果 を表−4.2.2 に示す。横浜ベイブリッジは φ100の引張接着強度試験を5箇所、φ80の引張 接着強度試験を5箇所行った。大平高架橋は φ80の引張接着強度試験を5箇所行った。

(1) 横浜ベイブリッジの試験結果の概要

破壊形態について、 φ100 の場合、引張接着強度試験 5 箇所のうち、1 箇所が SFRC 舗装 での材料破壊(写真-4.2.16(a))、4 箇所が治具接着剤近傍での破壊(写真-4.2.16(b)~ (e))となった。本試験では、既設鋼床版と SFRC 舗装の接着剤を対象とした試験であるた め、治具接着剤近傍での破壊形態は目的と合致しない破壊形態である。一方で、 φ80 の場 合、引張接着強度試験 5 箇所のうち、4 箇所が SFRC 舗装での材料破壊(写真-4.2.16(f) ~(i))、1 箇所が治具接着剤近傍での破壊(写真-4.2.16(j))となった。切削径が大きい ほど引張荷重値が大きくなるため、SFRC 舗装での破壊よりも応力集中箇所と想定する治 具直下の治具用接着剤近傍(図-4.2.3)が先行して破壊されたと考えられる。詳細は 4.2.4(1)に考察した内容を示す。

SFRC 舗装マニュアル^{4.1)} では、破壊形態の評価目安については、「接着剤と SFRC との 混合層あるいは SFRC での破壊の面積割合が 90%以上」と定められている。横浜ベイブリ ッジの試験について、 ϕ 80 の試験では 5 箇所中治具接着剤近傍で破壊した 1 箇所を除く 4 箇所全てで、評価目安を満足する結果となった。

引張接着強度について、SFRC 舗装での破壊を示した箇所の平均値はそれぞれ、2.61 N/mm²、3.05 N/mm²であった。SFRC 舗装マニュアル ^{4.1)}の付属資料では現場における施工 管理のための試験の場合には引張接着強度を評価の目安として使用できることが示されて いる。この場合、引張接着強度は「1.0N/mm²以上」を良否の目安とすることが示されてい る。本試験は評価目安を満足する結果であった。なお、治具接着剤近傍で破壊した No.2~ 5,10 の試験体は SFRC 舗装と鋼床版の接着剤の強度は計測できなかった。しかしながら、 既設鋼床版と SFRC 舗装を一体化する接着剤の強度は、治具用接着剤近傍の強度と同等以 上の値と推定できるため、目安である 1.0N/mm²以上の強度を有していたと考えられる。

(2) 大平高架橋の試験結果

破壊形態について,表-4.2.2 より, φ80 の引張接着強度試験 5 箇所のうち,全てが SFRC 舗装での材料破壊(写真-4.2.17)であった。破壊形態の評価目安である「接着剤と SFRC との混合層あるいは SFRC での破壊の面積割合が 90%以上」を満足している。

引張接着強度については表-4.2.2 より,SFRC 舗装での破壊を示した箇所の平均値は 2.75N/mm²であった。SFRC 舗装マニュアル^{4.1)}の付属資料では現場における施工管理のた めの試験の場合には引張接着強度を評価の目安として使用できることが示されている。こ の場合,引張接着強度は「1.0N/mm²以上」を良否の目安とするため,本試験は評価目安を

調杏笛斫		構近ベイブ	リッジ (ヵ100)			構近ベイフ	ブリッジ(ヵ80)		
<u>兩重面別</u> 気温(℃)	21.4					21.4			
	N	破壊が生じた	引張接着強度	平均	N.	破壊が生じた	引張接着強度	平均	
	INO	部位	(N/mm^2)	値	INO	部位	(N/mm^2)	値	
	1	SFRC	2.61	2.61	6	SFRC	2.82		
結果	2	治具接着剤	2.01		7	SFRC	2.98	3.05	
	3	治具接着剤	2.20		8	SFRC	3.07	5.05	
	4	治具接着剤	2.38	-	9	SFRC	3.31		
	5	治具接着剤	2.46		10	治具接着剤	2.55	_	

表-4.2.1 引張接着強度試験結果(横浜ベイブリッジ)

表-4.2.2 引張接着強度試験結果 (大平高架橋)

調査箇所	大平高架橋 (φ80)						
気温(℃)			21.8				
	No	破壊が生じた	引張接着強度	平均			
	INO	部位	(N/mm^2)	値			
	11	SFRC	2.57				
結果	12	SFRC	2.65				
	13	SFRC	2.78	2.75			
	14	SFRC	2.85				
	15	SFRC	2.92				

図-4.2.3 応力集中イメージ

横浜ベイブリッジでの結果について,引張接着強度試験の結果を表-4.2.3 に,切削深さ を表-4.2.4 に,抜取り供試体の寸法を表-4.2.5 に,試験日の温湿度を表-4.2.6 に示す。 切削深さは,コア切削を行った後,現地で測定を行った。測定は1つの切削箇所に対し て4箇所に実施しており,その平均値を算出した。

切削径	洪試体 番号	設計 直径 (mm)	実測 直径 (mm)	設計付着 面積 (mm ²)	実測付着 面積 (㎜)	付着力 (N)	引張接着 強度 (N/mm ²)	破壊形態 ※下記の A~G	備考
	1	100	99.7	7854	7803	20,400	2.61	А	実測付着面積にて引張付着強度を計算
	2	100	-	7854	-	15,800	※2.01以上	G	※治具面破壊のため
Φ 100	3	100	-	7854	-	17,300	※2.20以上	G	※治具面破壊のため
$\Psi 100$	4	100	-	7854	-	18,700	※2.38以上	G	※治具面破壊のため
	5	100	-	7854	-	19,300	※2.46以上	G	※治具面破壊のため
			$\overline{\Psi}$	均值			2.61	_	※は除く
	6	80	80.6	5,027	5,100	14,400	2.82	А	実測付着面積にて引張付着強度を計算
	7	80	80.6	5,027	5,100	15,200	2.98	А	実測付着面積にて引張付着強度を計算
<u>д</u> 80 —	8	80	80.7	5,027	5,112	15,700	3.07	А	実測付着面積にて引張付着強度を計算
\$00	9	80	80.6	5,027	5,100	16,900	3.31	А	実測付着面積にて引張付着強度を計算
	10	80	-	5,027	-	12,800	※2.55以上	G	※治具面破壊のため
			파	均值			3.05	_	※は除く

表-4.2.3 引張接着強度試験の詳細な結果(横浜ベイブリッジ)

〔破壊形態〕

A :コンクリート内の破壊

B : コンクリート内の破壊+コンクリートと接着剤の界面の破壊+鋼床版と接着剤の界面の破壊

C : コンクリート内の破壊+コンクリートと接着剤の界面の破壊

D : コンクリートと接着剤の界面+鋼床版と接着剤の界面の破壊

E : コンクリートと接着剤の界面の破壊

F :鋼床版と接着剤の界面の破壊

G : 冶具と接着剤の界面およびコンクリート上面と接着剤の界面の破壊

-					
/	D1	D2	D3	D4	平均
No.1	7.4	7.3	7.4	7.4	7.4
No.2	7.3	7.3	7.4	7.3	7.3
No.3	7.5	7.4	7.7	7.5	7.5
No.4	7.3	7.5	7.5	7.5	7.5
No.5	7.3	7.4	7.4	7.3	7.4
No.6	7.2	7.2	7.7	7.3	7.4
No.7	7.5	7.5	7.5	7.5	7.5
No.8	7.5	7.6	7.6	7.5	7.6
No.9	7.4	7.5	7.3	7.4	7.4
No.10	7.5	7.5	7.5	7.4	7.5
				田	位·cn

表-4.2.4 切削深さ(横浜ベイブリッジ)

表-4.2.5 抜取り供試体の寸法(横浜ベイブリッジ)

	高さ H1 cm	高さ H2 cm	高さ H3 cm	高さ H4 cm	平均高 さ H0 cm	直径 D1 cm	直径 D2 cm	平均 直径 D0 cm	断面積 A0 cm ²	体積 V0 cm ³
No.1	7.15	6.95	7.11	7.11	7.08	9.97	9.96	9.97	77.95	551.90
No.2	1mm以下	1mm以下	1mm以下	1mm以下	-	I	-	-	-	-
No.3	1mm以下	1mm以下	1mm以下	1mm以下	-	I	-	-	-	-
No.4	1mm以下	1mm以下	1mm以下	1mm以下	-	I	-	-	-	-
No.5	1mm以下	1mm以下	1mm以下	1mm以下	-	I	-	-	-	-
No.6	7.18	7.30	7.24	7.32	7.26	8.07	8.05	8.06	51.00	370.23
No.7	7.25	7.11	7.29	7.14	7.20	8.07	8.05	8.06	51.00	367.05
No.8	6.75	6.92	6.93	6.87	6.87	8.07	8.07	8.07	51.12	351.09
No.9	4.42	4.90	4.60	4.30	4.56	8.06	8.05	8.06	50.93	232.00
No.10	1mm以下	1mm以下	1mm以下	1mm以下	-	-	-	-	-	-

表-4.2.6 引張接着強度試験時の環境データ

	温度(℃)	湿度(%)
最大値	21.5	55
最小値	21.4	53
平均值	21.4	54

横浜ベイブリッジでの結果について,引張接着強度試験後の状況を**写真-4.2.16** に示す。 左側の写真は引張接着強度試験を行ったコアを,右側の写真は鋼床版側をそれぞれ示す。 (b)~(e),(j)は治具用接着剤近傍での破壊形態となっており,鋼床版側に治具用接着 剤(灰色)が残留しているものもある。

(a) No.1(φ100)(左側:コア,右側:鋼床版)SFRC 舗装材料破壊

(b) No. 2 (φ100) (左側:コア,右側:鋼床版)治具用接着剤での破壊 写真-4. 2. 16 横浜ベイブリッジ 引張接着強度試験 試験後の状況 (その1)

(c) No.3 (φ100) (左側:コア,右側:鋼床版) 治具用接着剤での破壊

(d) No.4(φ100)(左側:コア,右側:鋼床版)治具用接着剤での破壊

(e) No.5(φ100)(左側:コア,右側:鋼床版)治具用接着剤での破壊
 写真-4.2.16 横浜ベイブリッジ 引張接着強度試験 試験後の状況(その2)

(f) No.6 (*φ* 80) (左側:コア,右側:鋼床版) SFRC 舗装材料破壊

(g) No.7(\$\phi 80) (左側:コア,右側:鋼床版) SFRC 舗装材料破壊

(h) No. 8 (φ80) (左側:コア,右側:鋼床版) SFRC 舗装材料破壊
 写真-4.2.16 横浜ベイブリッジ 引張接着強度試験 試験後の状況 (その3)

(i) No.9(*ϕ* 80) (左側:コア,右側:鋼床版) SFRC 舗装材料破壊

(j) No. 10 (φ80) (左側:コア,右側:鋼床版)治具用接着剤での破壊

写真-4.2.16 横浜ベイブリッジ 引張接着強度試験 試験後の状況(その4)

大平高架橋での結果について,引張接着強度試験の結果を表-4.2.7 に,切削深さを表-4.2.8 に,抜取り供試体の寸法を表-4.2.8 に,試験日の温湿度を表-4.2.10 に示す。

切削深さは、コア切削を行った後、現地で測定を行った。測定は 1 つの切削箇所に対して 4 箇所に実施しており、その平均値を算出した。

切削径	供試体 番号	設計 直径 (mm)	実測 直径 (mm)	設計付着 面積 (mm ²)	実測付着 面積 (㎡)	付着力 (N)	引張接着 強度 (N/mm ²)	破壊形態 ※下記の A~G	備考
	11	80	80.3	5,027	5,062	13,000	2.57	Α	実測付着面積にて引張付着強度を計算
	12	80	80.3	5,027	5,062	13,400	2.65	А	実測付着面積にて引張付着強度を計算
A 80	13	80	80.4	5,027	5,074	14,100	2.78	Α	実測付着面積にて引張付着強度を計算
$\Psi 00$	14	80	80.2	5,027	5,049	14,400	2.85	Α	実測付着面積にて引張付着強度を計算
	15	80	80.4	5,027	5,074	14,800	2.92	Α	実測付着面積にて引張付着強度を計算
			뀩	区均值			2.75	—	※は除く

表-4.2.7 引張接着強度試験の詳細な結果(大平高架橋)

路面温度:21℃

A

 С

D

В

〔破壊形態〕

- A :コンクリート内の破壊
- B : コンクリート内の破壊+コンクリートと接着剤の界面の破壊+鋼床版と接着剤の界面の破壊
- C : コンクリート内の破壊+コンクリートと接着剤の界面の破壊
- D : コンクリートと接着剤の界面+鋼床版と接着剤の界面の破壊
- E : コンクリートと接着剤の界面の破壊
- F : 鋼床版と接着剤の界面の破壊

G : 冶具と接着剤の界面およびコンクリート上面と接着剤の界面の破壊

表-4.2.8 切削深さ(大平高架橋)

路面 <u>9.5 9.5</u> <u>9.4 9.5</u> <u>9.5 9.6</u> <u>9.5 9.6</u>

	D1	D2	D3	D4	平均
No.11	9.5	9.5	9.6	9.5	9.5
No.12	9.5	9.5	9.5	9.4	9.5
No.13	9.5	9.6	9.7	9.5	9.6
No.14	9.7	9.7	9.6	9.6	9.7
No.15	9.6	9.5	9.6	9.5	9.6
				単	位:cm

表-4.2.9 抜取り供試体の寸法(大平高架橋)

	高さ H1 cm	高さ H2 cm	高さ H3 cm	高さ H4 cm	平均高 さ H0 cm	直径 D1 cm	直径 D2 cm	平均 直径 D0 cm	断面積 A0 cm ²	体積 V0 cm ³
No.11	4.65	4.24	4.95	4.41	4.56	8.03	8.02	8.03	50.55	230.65
No.12	8.93	9.01	9.01	8.96	8.98	8.03	8.03	8.03	50.62	454.42
No.13	3.14	2.82	3.95	2.80	3.18	8.03	8.04	8.04	50.68	161.04
No.14	9.17	8.47	8.42	8.96	8.76	8.02	8.02	8.02	50.49	442.05
No.15	8.73	8.51	9.00	8.90	8.79	8.04	8.04	8.04	50.74	445.78

表-4.2.10 引張接着強度試験時の環境データ

A		
	温度(℃)	湿度(%)
最大値	21.9	62
最小値	21.8	61
平均值	21.8	61

大平高架橋での結果について,引張接着強度試験後の状況を**写真-4.2.17** に示す。左側の写真は引張接着強度試験を行ったコアを,右側の写真は鋼床版側をそれぞれ示す。全ての試験において,SFRC舗装での材料破壊であることが確認できる。

(a) や(c)の鋼床版側の写真を見ると,他の試験箇所に比べて浅い箇所での材料破壊 であることが確認できる。浅い位置での破壊となった原因は不明であるが,SFRC 舗装の 骨材の嚙み合わせ等の影響により,SFRC 舗装中に脆弱部が存在した可能性がある。なお, (a) や(c)を含めたすべての試験位置で引張接着強度は目安である 1.0N/mm²以上の結果 であった。

(a) No. 11 (\$\phi 80) (左側:コア,右側:鋼床版) SFRC 舗装材料破壊

(b) No. 12 (φ 80) (左側: コア, 右側: 鋼床版) SFRC 舗装材料破壊
 写真-4. 2. 17 大平高架橋 引張接着強度試験 試験後の状況 (その 1)

(c) No. 13 (*φ* 80) (左側:コア,右側:鋼床版) SFRC 舗装材料破壊

(d) No. 14 (φ80) (左側:コア,右側:鋼床版) SFRC 舗装材料破壊

(e) No. 15 (φ80) (左側: コア, 右側: 鋼床版) SFRC 舗装材料破壊
 写真-4. 2. 17 大平高架橋 引張接着強度試験 試験後の状況(その2)

4.2.4 考察

(1) φ100の引張接着強度試験における治具用接着剤近傍破壊の原因

横浜ベイブリッジの φ100 の引張接着強度試験において,治具用接着剤近傍での破壊を 示した原因としては,切削径の影響と治具の大きさの影響が考えられる。以下,それぞれ の影響について示す。

切削径の影響

横浜ベイブリッジの試験結果について、SFRC舗装での材料破壊となった。 φ 100のNo.1, φ 80のNo.6~9を対象にした引張接着強度の平均値を図-4.2.4に、引張荷重の平均値を 図-4.2.5に示す。切削径の影響について、引張接着強度は切削径 φ 80の方が φ 100よりも 大きく、引張荷重は切削径 φ 80の方が φ 100よりも小さい結果となった。切削径が大きい と引張荷重値が大きくなるために、既設鋼床版とSFRC舗装の接着剤の破壊よりも早期に、 応力集中箇所である治具直下の治具用接着剤近傍で破壊が生じたものと考えられる。

②治具の大きさが引張荷重に与える影響

本試験で使用した治具は、軸棒径が φ10mm,厚さが 19 mmであった。既往の文献^{4.5)}で は、治具の軸棒径と厚さをパラメータに、FEM 解析や直接引張試験による検討を行い、治 具の軸棒径と厚さが引張試験の応力集中に与える影響を検討している。軸棒径が太く、厚 さが厚いほどに応力集中は小さく、軸棒径が細く、厚さが薄いほどに応力集中は大きいこ とが報告されている。

横浜ベイブリッジおよび大平高架橋の引張接着強度試験で使用した治具は、軸棒径が φ10mm,厚さが 19mm の治具を使用しており、応力集中が生じた可能性があるため、治 具接着剤近傍での破壊形態が生じた可能性がある。

(2) 横浜ベイブリッジと大平高架橋の比較(ϕ 80)に基づく考察

横浜ベイブリッジと大平高架橋の φ80の引張接着強度試験の平均値の比較を図−4.2.6に

示す。横浜ベイブリッジでは 3.05N/mm² (SFRC 舗装での材料破壊を示した 4 体の平均値), 大平高架橋は 2.75N/mm² (5 体の平均値) であった。

横浜ベイブリッジの試験位置の特徴として、ダブルデッキ構造の下層のために雨水の影響が小さいこと、未供用区間のために輪荷重の影響がないことが挙げられる。大平高架橋の試験位置の特徴として、輪荷重直下であることや、凍結防止のための樹脂舗装をオーバーレイしているものの雨水の影響をうけることが挙げられる。このため、横浜ベイブリッジの方が大平高架橋よりもマイルドな環境条件であることが引張接着強度の差の要因の1つになったと考えられる。

また,SFRC舗装の施工時の養生方法について,横浜ベイブリッジでは冬期の施工となっ たために真空脱水工法を採用していたと施工記録が残っている^{4.2)}。真空脱水工法は,コン クリートの打設直後に,真空ホースを取り付けた特殊真空マットパネルにより,コンクリ ート表面から水・空気を取り去り,大気圧をコンクリートにかけて締め固める工法である。 効果としては,微振動条件下でのコンクリートのダレ抑制,乾燥収縮量の減少,コンクリ ートの表面硬度の増大による耐摩耗抵抗性の向上などが挙げられており,強度が高くなっ たことが考えられる。

図-4.2.6 引張接着強度の平均値 (*φ*80)

4.3 実橋の路面ひび割れ調査

S橋は2005年にSFRC舗装を疲労対策として施工されて以降, 表-4.3.1に示す時期に定期 点検や路面ひび割れの目視調査を行っている。調査として,道路管理者により行われた定 期点検結果の分析と,著者らによる目視調査を行った。

道路管理者によって2014年と2019年に定期点検が行われている。今回の分析において、 2回の定期点検結果のうち、同じ位置に生じている損傷の写真を整理し、損傷の進展を確認した。

土木研究所は、S橋がSFRC舗装による対策を実施されてから5年経過時(2010年)、10年 経過時(2015年)に目視調査^{4.6)}を行い、舗装路面の橋軸方向と橋軸直角方向にひび割れを 確認している。今回の調査ではそのひび割れの進展や新たなひび割れ等の調査を行った。

	定期点検	路面ひび割れの目視調査
1回目	2010年	2010年
2回目	2014年	2015年
3回目	2019年	2020年

表-4.3.1 S橋に対して過去に実施した点検・調査

4.3.1 調査位置

図-4.3.1にS橋の試験位置の側面図を,表-4.3.2に対象範囲の整理を示す。
 S橋のA区間はエポキシ系接着剤Aを,B区間はエポキシ系接着剤Bを使用している。

図-4.3.1 S橋 側面図

公二0.2~0個00月來起回0°正在						
名称	範囲	(1) 定期点検結果	(2) 目視調査結果			
		比較箇所	比較箇所			
対象範囲①	A 区間 P3~P4	4箇所	1 箇所			
対象範囲②	A区間 P4~P5	1箇所	1 箇所			
対象範囲III	A区間 P5~P6	6箇所	2箇所			
対象範囲IV	B区間 P6~P7	4箇所	1 箇所			
対象範囲V	B区間 P7~P8	4箇所	1 箇所			
対象範囲VI	B 区間 P8~P9	4箇所	4箇所			

表-4.3.2 S橋の対象範囲の整理

4.3.2 調査結果

調査結果では、道路管理者により行われた定期点検結果の整理と、土木研究所が行った 路面ひび割れの調査結果の整理を示す。

道路管理者により行われた定期点検は, P3 から A2 までの全面的な状態把握を整理した。 特に, 2014 年の点検結果と 2019 年の点検結果を整理し,同一箇所の損傷状況の写真を示 すことで,進展状況や損傷状況の変化を把握した。

土木研究所が行った路面ひび割れの調査は, P3 から A2 までの損傷の著しい部位に限定 して継続的に調査した結果であり,過去(2010年,2015年)に実施した調査内容に今回 (2020年)の調査結果を追加して示す。 (1) 道路管理者が実施した定期点検結果による比較

1) 対象範囲 I (A 区間 P3~P4) (図-4.3.1, 表-4.3.2)

図-4.3.2 に対象範囲 I の区間を,図-4.3.3 に 2014 年および 2019 年の定期点検果の損傷 比較を,表-4.3.3 に 2014 年および 2019 年の定期点検果の同一箇所の写真を示す。

図-4.3.2 対象範囲 I (A 区間 P3 橋脚~P4 橋脚)

2019.1 (供用から14年程度)

表-4.3.3 定期点検結果の比較(範囲 I A 区間 P3 橋脚~P4 橋脚)

2) 対象範囲Ⅱ(A区間 P4~P5)(図-4.3.1,表-4.3.2)

図−4.3.4 に対象範囲 II の区間を,図−4.3.5 に 2014 年および 2019 年の定期点検果の損傷 比較を,表−4.3.4 に 2014 年および 2019 年の定期点検果の同一箇所の写真を示す。

図-4.3.4 対象範囲 II (A 区間 P4 橋脚~P5 橋脚)

2014.6 (供用から9年程度)

図-4.3.5 定期点検結果の比較(範囲 II A 区間 P4 橋脚~P5 橋脚)

	2014.6 (供用から9年)	2019.1 (供用から 14 年)
1		

表-4.3.4 定期点検結果の比較(範囲 II A 区間 P4 橋脚~P5 橋脚)

3) 対象範囲III(A区間 P5~P6)(図-4.3.1,表-4.3.2)

図−4.3.6 に対象範囲Ⅲの区間を,図−4.3.7 に 2014 年および 2019 年の定期点検果の損傷 比較を,表−4.3.5 に 2014 年および 2019 年の定期点検果の同一箇所の写真を示す。

図-4.3.6 対象範囲Ⅲ(A区間 P5橋脚~P6橋脚)

2014.6 (供用から9年程度)

表-4.3.5 定期点検結果の比較(範囲Ⅲ A区間 P5橋脚~P6橋脚)その1

	2014.6 (供用から9年)	2019.1 (供用から14年)
4		
5		
6		-05

表-4.3.5 定期点検結果の比較(範囲Ⅲ A区間 P5橋脚~P6橋脚)その2

4) 対象範囲IV(B区間 P6~P7)(図-4.3.1,表-4.3.2)

図-4.3.8 に対象範囲IVの区間を,図-4.3.9 に 2014 年および 2019 年の定期点検果の損傷 比較を,表-4.3.6 に 2014 年および 2019 年の定期点検果の同一箇所の写真を示す。

図-4.3.8 対象範囲Ⅳ(B区間 P6橋脚~P7橋脚)

2014.6 (供用から9年程度)

2019.1 (供用から14年程度)

	2014.6 (供用から9年)	2019.1 (供用から 14 年)
1		
2		
3		63
4		

表-4.3.6 定期点検結果の比較(範囲Ⅳ B区間 P6 橋脚~P7 橋脚)
5) 対象範囲V(B区間 P7~P8)(図-4.3.1,表-4.3.2)

図-4.3.10 に対象範囲 Vの区間を,図-4.3.11 に 2014 年および 2019 年の定期点検果の損 傷比較を,表-4.3.7 に 2014 年および 2019 年の定期点検果の同一箇所の写真を示す。

図-4.3.10 対象範囲V(B区間 P7橋脚~P8橋脚)

2014.6 (供用から9年程度)

2019.1 (供用から14年程度)

図-4.3.11 定期点検結果の比較(範囲V B区間 P7橋脚~P8橋脚)

	2014.6 (供用から9年)	2019.1 (供用から14年)
1		
2	1	
3		
4		

表-4.3.7 定期点検結果の比較(範囲V B区間 P7橋脚~P8橋脚)

6) 対象範囲VI (B 区間 P8~A2) (図-4.3.1, 表-4.3.2)

図-4.3.12 に対象範囲VIの区間を,図-4.3.13 に 2014 年および 2019 年の定期点検果の損 傷比較を,表-4.3.8 に 2014 年および 2019 年の定期点検果の同一箇所の写真を示す。

図-4.3.12 対象範囲Ⅵ(B区間 P8橋脚~A2橋脚)

2014.6 (供用から9年程度)

	2014.6 (供用から9年)	2019.1 (供用から14年)
1		The second secon
2		
3		
4		

表-4.3.8 定期点検結果の比較(範囲VI B区間 P8橋脚~A2橋脚)

7)まとめ

橋軸直角方向のひび割れは、橋梁全体にみられた。一般的なコンクリート舗装において、 橋軸直角方向に等間隔に現れるひび割れは健全なものとされているが、目地部等に局所的 に表れるひび割れは有害である可能性がある。定期点検の結果を確認したところ、目地部 等に局所的に集中したひび割れは確認できなかった。

橋軸方向のひび割れは,輪荷重走行位置に全長にわたって発生しているが,経年変化に よる損傷の進展を確認できなかった。損傷原因としては,大型車のダブルタイヤがUリブ ウェブを跨いで作用することでデッキプレート上面に負曲げが発生し,ひび割れが発生し たと推定される。 (2) 土木研究所が実施した目視によるひび割れ調査の比較

表-4.3.9 に目視によるひび割れ調査結果の経年比較を示す。今回(2020年)に実施した 調査は、過去の調査と同じ方法で実施した。路面のひび割れに着目し、車線規制を伴わず に歩道部から外観目視で行った。過去のひび割れ発生箇所について、可能な限り同角度か ら写真撮影を行い、ひび割れの進展を確認した。

今回(2020年)の目視調査では、従前調査時(2015年)に確認したひび割れの進展は確認できなかった。また、従前調査時に確認したひび割れの一部について、今回調査では確認できないものがあった。対象橋梁は SFRC 舗装の打換は行っていないため、車両走行による摩耗や調査時の天候(曇り)の影響により、目視ではひび割れを確認できなかったと考えられる。

図-4.3.14 S橋の比較箇所

表-4.3.9 目視によるひび割れ調査結果の経年比較(その1)

表-4.3.9 目視によるひび割れ調査結果の経年比較(その2)

(3) 調査結果のまとめ

表-4.3.10に2019年に道路管理者により実施された橋梁点検の点検結果(一部抜粋)と, 目視調査による主なひび割れの損傷状況を示す。定期点検は,SFRC舗装による対策後にお いては,2010年度,2014年度,2019年度に実施されている。過去の定期点検結果を比較し た結果,著しい損傷の進展はなかった。過去に土木研究所で行った目視調査結果と比較し て,路面ひび割れの著しい進展は確認されなかった。なお,前回調査時に確認したひび割 れの一部については今回の調査で確認できないものがあった。対象橋梁において,SFRC舗 装の打換は行っていないため,車両走行による摩耗や調査時の天候(曇り)の影響により, 目視ではひび割れを確認できなかったと考えられる。

また,輪直下の舗装路面が摩耗しており骨材が露出している箇所や舗装路面に鋼繊維の 錆が露出している箇所(写真-4.3.1)を確認した。鋼繊維の錆の露出箇所において,目視 では鋼繊維が路面垂直方向に立っている様子が確認できなかったため,車両の走行に与え る影響は小さいと考えられる。

表-4.3.10 S橋の橋梁点検結果と主な損傷状況写真

写真-4.3.1 鋼繊維の状態 (SFRC 舗装路面)

5. まとめ

2章~4章で実施した主な検討結果を以下にまとめて示す。

第2章 環境負荷を作用させた接着剤の引張接着強度試験

鋼床版デッキプレートと SFRC 舗装の接合部における接着剤の耐久性について, SFRC 舗 装と鋼床版デッキプレートを模擬した小型試験体を用いて,各種の条件で環境負荷を作用 させた後に引張接着強度試験,圧縮強度試験を行い,引張接着強度に影響を及ぼす要因と その強度変化の程度を把握した。第2章で得られた主な検討結果を以下に示す。

1) 引張接着強度試驗

温水負荷(28日,168日),模擬貫通ひび割れを導入した後の温水負荷(28日,168日), 模擬貫通ひび割れを導入し温水負荷(168日)後にひび割れ注入を行い,さらに温水負荷(28 日)を与えた結果,引張接着強度は若干の低下が認められた条件があるものの,すべての 試験結果では,SFRC舗装マニュアル^{5.1)}の付属資料の現場における施工管理のための目安 とされている引張接着強度「1.0N/mm²以上」であった。また,著しい引張接着強度の低下 は生じなかった。

模擬貫通ひび割れのない試験体に対して,温水負荷を与えた条件では引張接着強度の低下はみられなかった。一方,模擬貫通ひび割れのある試験体に対して,温水負荷を与えた 条件では引張接着強度の低下がみられた。後述するように,鋼床版デッキプレートを模擬 した鋼板上にさびの発生が確認された試験体があり,SFRC舗装に貫通ひび割れが生じると 鋼床版デッキプレートからの水の浸入により,鋼床版デッキプレート上にさびが発生し, 引張接着強度の低下が生じる可能性がある。

また,模擬貫通ひび割れのある試験体に対して,温水負荷を与えて,その後,ひび割れ 注入し,さらに温水負荷を与えた場合,引張接着強度は模擬貫通ひび割れを与えていない 試験体と同等以上の強度が確認された。SFRC舗装に貫通ひび割れが生じた場合にもひび割 れを注入材により補修することで引張接着強度の低下を抑制できる可能性がある。

2) 破壊形態の分析

SFRC 舗装マニュアル^{5.1)} では引張接着強度試験を評価する際の目安として,破壊形態は 「接着剤と SFRC との混合層あるいは SFRC での破壊の面積割合が 90%以上」であることが 示されている。引張接着強度試験の破壊形態について,9ケース中6ケースの試験体は接着 剤と SFRC との混合層あるいは SFRC での破壊の面積割合が 90%以上であった。このため, 鋼板デッキプレートと SERC 舗装の接合部における接着剤の引張接着強度は,接着剤と SFRC との混合層あるいは SFRC での破壊により得られた引張接着強度以上の強度を有して いるものと考えられる。

一方で、9ケース中3ケースの試験体において、鋼板と接着剤間の界面破壊が生じ、一部 にさびの発生が確認された。コア切削や模擬貫通ひび割れ導入して温水負荷を与えた状態 で、鋼板と接着剤の接合部に水が浸透した可能性が考えられる。しかしながら、引張接着 強度はSFRC舗装マニュアル^{5.1})の付属資料の現場における施工管理のための目安とされている「1.0N/mm²以上」を確保されていたことから、さびの発生が直ちに引張接着強度に影響を与える可能性は低いと考えられるものの、SFRC に貫通ひび割れが生じて水が浸入すると引張接着強度に影響を与える可能性があるため、実橋でSFRC に貫通ひび割れが生じた際には留意する必要があると考えられる。

3) 圧縮強度試験

引張接着強度試験結果と圧縮強度試験結果に明確な相関性はみられなかった。なお、SFRC の密度が大きい試験体は圧縮強度についても大きく、密度と圧縮強度には相関性があるこ とが確認された。

第3章 浸水負曲げ疲労試験

SFRC舗装の負曲げ域に生じるひび割れの進展性状,ひび割れの進展に伴い水が浸入する ことによる引張接着強度の影響について把握することを目的に,小型試験体を用いて静的 負曲げ試験,浸水負曲げ疲労試験および浸水負曲げ疲労試験後の引張接着強度試験を行っ た。第3章で得られた主な検討結果を以下に示す。

1)静的負曲げ試験

負曲げを受ける SFRC のひび割れ時の挙動について, SFRC 舗装上面の表面ひずみが 800 μ程度で目視で確認できるひび割れが発生することを確認した。

2) 浸水負曲げ疲労試験および引張接着強度試験

静的負曲げ試験では、ひび割れが鋼板まで貫通していなかったが、200万回の浸水負曲げ 疲労試験を行った結果、引張接着強度試験後のコアを観察したところコア断面に微細なひ び割れが生じており、鋼板部までひび割れが貫通していることが確認された。さらに、疲 労試験で使用したウラニンについて、SFRC舗装の上面から鋼板部まで到達していることが 確認されたために、鋼床版デッキプレートと SFRC舗装の接合部における接着剤に水が浸入 していることが確認された。

疲労試験後の引張接着強度試験を行い,ひび割れ発生位置と一般部位置(ひび割れが生 じていない位置)の引張接着強度を比較した結果,差はほとんど見られなかった。また, すべての試験位置において SFRC 舗装マニュアル^{5.1)}における破壊形態「接着剤と SFRC と の混合層あるいは SFRC での破壊の面積割合が 90%以上」と引張接着強度「1.0N/mm²以上」 の評価目安を満足した。貫通ひび割れが生じ,水が浸入したとしても,直ちに引張接着強 度の著しい低下に至る可能性は低いことを示唆していると考えられるが,前述のとおり, 引張接着強度の低下要因として考えられるため,SFRC に貫通ひび割れが生じた際には留意 する必要があると考えられる。

第4章 耐久性を確認するための実橋調査

SFRC 舗装の施工から約 15 年が経過した実橋における引張接着強度とひび割れ等の状況

を把握することを目的として,SFRC 補強工法に用いる接着剤の引張接着強度試験および SFRC 舗装路面のひび割れ調査を行った。第4章で得られた主な検討結果を以下に示す。

1) 実橋の引張接着強度試験

横浜ベイブリッジ下国道357号と国道50号大平高架橋において、引張接着強度試験を行った結果,ほとんどの試験結果では接着剤とSFRCとの混合層あるいはSFRCでの破壊の面積割合が90%以上であった。なお、一部の試験結果ではSFRC舗装表面と治具接着面での破断であったものの、引張接着強度はSFRC舗装マニュアル^{5.1})の付属資料の現場における施工管理のための目安とされている「1.0N/mm²以上」を確保されていたことから、鋼床版デッキプレートとSFRC舗装の接合部における接着剤の強度は、SFRC舗装表面と治具接着面での破断時の引張接着強度以上の値を有しているものと考えられる。以上の結果から、SFRC舗装マニュアル^{5.1})における破壊形態と引張接着強度の評価目安を満足していることから、SFRC舗装の施工から約15年が経過したSFRC舗装の接着剤について、明確な劣化が生じておらず、比較的に健全な状態を保っていることがわかった。

2) 実橋の路面ひび割れ調査

2005 年に SFRC 舗装を疲労対策として施工した S 橋のひび割れ調査について,道路管理 者が実施した定期点検結果と,土木研究所が行った路面ひび割れの追跡調査より,ひび割 れの顕著な進展は生じていなかった。

本資料では,SFRC 舗装の耐久性について,試験及び実橋の実態調査を行った結果をとり まとめたが,長期的な面では不確実な部分もあるため今後も追跡調査等によるデータの蓄 積は課題である。

謝辞

本研究について,国立研究開発法人 土木研究所の招聘研究員である東京都立大学大学院都市環境科学研究科都市基盤環境学域の村越潤教授には研究を進めるうえでの貴重な助言をいただいた。また、4章における実橋の引張接着強度試験およびひび割れ調査の実施にあたって,国土交通省関東地方整備局の関東道路メンテナンスセンター,横浜ベイブリッジでの試験では国土交通省関東地方整備局横浜国道事務所,大平高架橋の試験では国土交通省関東地方整備局時都宮国道事務所をはじめ,各事務所の方々に格別のご協力をいただいた。ご協力いただいた関係各位に深く感謝致します。

参考文献

1章

- 1.1) (公社)日本道路協会:鋼道路橋疲労設計便覧, pp.9~10、2020
- (独)土木研究所,(株)横河ブリッジ,(株)NIPPO, 鹿島道路(株),大成ロテック(株): 鋼床版橋梁の疲労耐久性向上技術に関する共同研究(その2・3・4)報告書— SFRC 舗装による既設鋼床版の補強に関する設計・施工マニュアル(案)—,共同 研究報告書整理番号第 395 号,2009
- 1.3) 幅三四郎,村越潤,小野秀一,佐藤歩:屋外暴露した鋼床版 SFRC 舗装試験体の接着剤接合部の経年劣化傾向,第 25 回鋼構造年次論文報告集,日本鋼構造協会, Vol.25, No.9, pp.63-70, 2017.11.
- 1.4) 魏宗鐸,村越潤,小野秀一,佐々木良輔,高橋実:SFRC舗装鋼床版試験体における 接着剤接合部の経年劣化傾向,第14回複合・合成構造の活用に関するシンポジウム 論文報告集,2021.11.
- 1.5) 佐々木寛幸,佐藤歩,村越潤,小野秀一,森猛:小型試験体による SFRC と鋼板との接着材接合面の強度及び耐久性に関する実験的検討,第9回道路橋床版シンポジウム論文報告集,pp.163-168, 2016.7.
- 1.6) 幅三四郎,村越潤,小野秀一,佐藤歩,森猛:鋼床版と SFRC 舗装の接着剤接合部 における劣化特性,土木学会第73回年次学術講演会概要集,I-436,2018.8.
- 1.7) 宇井崇,村越潤,梁取直樹,児玉孝喜,辻井豪,石垣勉,井口進:輪荷重走行試験 による鋼床版上 SFRC 舗装の疲労耐久性に関する検討,土木学会第64回年次学術講 演会概要集,I-157,2009.9.
- 1.8) 村越潤,木ノ本剛,春日井俊博,児玉孝喜,辻井豪:既設鋼床版のSFRC舗装による補強工法と耐久性評価に関する実験的検討,土木学会論文集 A1(構造・地震工学), Vol.69, No.3, pp.416-428, 2013.9.
- 小林明史,深山大介,平野秀一:施工後 10 年経過した鋼床版 SFRC 舗装の追跡調査, 土木学会第 73 回年次学術講演会概要集, I-134, 2018.8.
- 1.10) 中野博文,御嶽譲,小野秀一,児玉孝喜,一瀬八洋:SFRC 補強鋼床版負曲げ部の輪 荷重疲労耐久性検討,土木学会第65回年次学術講演会概要集,CS2-038,2010.9.
- 1.11) 石井博典,西野崇史,春日井俊博,宇井崇,梁取直樹,村越潤,石垣勉:鋼床版上
 SFRC 舗装の負曲げモーメント発生部を対象とした実験(その2),土木学会第62
 回年次学術講演会概要集,I-024,2007.9.
- 1.12) 梶原仁,木ノ本剛,小野秀一,荻野啓,千葉浩幸:鋼床版 SFRC 舗装の負曲げ域耐久 性検討,土木学会第 63 回年次学術講演会概要集, CS02-07, 2008.9.

2章

- 2.1) (独)土木研究所,(株)横河ブリッジ,(株)NIPPO, 鹿島道路(株),大成ロテック(株): 鋼床版橋梁の疲労耐久性向上技術に関する共同研究(その2・3・4)報告書—
 SFRC 舗装による既設鋼床版の補強に関する設計・施工マニュアル(案)—,共同 研究報告書整理番号第 395 号, 2009
- 2.2) 鋼材俱楽部 SFRC 構造設計施工研究会編:鋼繊維補強コンクリート設計施工マニュ アル(道路舗装編),技報堂出版,1992年9月
- 2.3) 佐々木寛幸, 佐藤歩, 村越潤, 小野秀一, 森猛:小型試験体による SFRC と鋼板との接着材接合面の強度及び耐久性に関する実験的検討, 第9回道路橋床版シンポジウム論文報告集, pp.163-168, 2016.7.
- 2. 4) 酒井正樹:100℃以下の加熱を受けるコンクリートの水分状態と圧縮強度に関する 研究動向,コンクリート工学, Vol.56, No.3, pp.251-259, 2018.3
- 2.5) 魏宗鐸,村越潤,小野秀一,佐々木良輔,高橋実:SFRC 舗装鋼床版試験体におけ る接着剤接合部の経年劣化傾向,第 14 回複合・合成構造の活用に関するシンポジ ウム論文報告集,2021.11.
- 2.6) 幅三四郎,村越潤,小野秀一,佐藤歩,森猛:鋼床版と SFRC 舗装の接着剤接合部 における劣化特性,土木学会第73回年次学術講演会概要集,I-436,2018.8.
- 2.7) 佐藤嘉昭, 永松静也, 竹田吉紹:長期材令コンクリートの圧縮クリープ特性に関する研究, セメント・コンクリート論文集, No.48, pp.394-399, 1994

3章

- 3.1) 宇井崇,梁取直樹,村越潤,石井博典,西野崇史,春日井俊博,石垣勉:鋼床版上 SFRC 舗装の負曲げモーメント発生部を対象とした実験(その1),土木学会第62 回年次学術講演会概要集,I-023,2007.9.
- 3.2) 石井博典,西野崇史,春日井俊博,宇井崇,梁取直樹,村越潤,石垣勉:鋼床版上 SFRC 舗装の負曲げモーメント発生部を対象とした実験(その2),土木学会第62 回年次学術講演会概要集,I-024,2007.9.
- 3.3) (独)土木研究所,(株)横河ブリッジ,(株)NIPPO, 鹿島道路(株),大成ロテック(株): 鋼床版橋梁の疲労耐久性向上技術に関する共同研究(その2・3・4)報告書—
 SFRC 舗装による既設鋼床版の補強に関する設計・施工マニュアル(案)—,共同 研究報告書整理番号第 395 号, 2009

4章

 4.1) (独)土木研究所,(株)横河ブリッジ,(株)NIPPO,鹿島道路(株),大成ロテック(株): 鋼床版橋梁の疲労耐久性向上技術に関する共同研究(その2・3・4)報告書—
 SFRC 舗装による既設鋼床版の補強に関する設計・施工マニュアル(案) —,共同 研究報告書整理番号第 395 号, 2009

- 4.2) 山田博道:横浜ベイブリッジにおける SFRC 舗装による鋼床版の疲労低減効果,舗
 装, Vol.44, No.2, pp.10-12, 2009.2
- 4.3) 加形護、児玉孝喜、中丸貢、西川隆晴、石田稔、栗原和彦:SFRC 舗装による鋼床版の疲労損傷対策— 一般国道 357 号横浜ベイブリッジ舗装工事 —,橋梁と基礎, Vol.38, No.10, pp.27-32, 2004.10
- 4.4) 小林明史, 深山大介, 平野秀一:施工後 10 年経過した鋼床版 SFRC 舗装の追跡調査, 土木学会第 73 回年次学術講演会概要集, I-134, 2018.8.
- 4.5) 一瀬八洋,千葉浩幸,神下竜三,小林哲夫:試験治具の寸法がコンクリート引張試験に及ぼす影響に関する一考察,第65回セント技術大会講演要旨,pp.230-231,2011
- 4.6) 村井啓太,玉越隆史,佐藤歩:SFRC舗装を用いた鋼床版疲労対策技術の耐久性の追跡調査,土木技術資料,第59巻,第11号,pp.32~35,2017

表-4.1.2 横浜ベイブリッジの事例

- 加形ら:SFRC 舗装による鋼床版の疲労損傷対策-一般国道 357 号横浜ベイブリッジ 舗装工事-, Vol.38, No.10, pp.27-32, 橋梁と基礎, 2004 年 10 月
- 西川:SFRC による鋼床版舗装 -鋼とコンクリートの新しい関係-,橋梁と基礎, vol.39, No.8, pp.84-87, 2005 年 8 月
- 3) 井出:SFRC 舗装による鋼床版の疲労低減効果,平成 18 年度国土交通省国土技術研究 会,2006 年 10 月
- 児玉ら:SFRC舗装による鋼床版の疲労耐久性向上対策,第12回 鋼構造と橋に関する シンポジウム論文報告集, pp.83-96,2009年8月

表-4.1.3 大平高架橋の事例

- 児玉ら:SFRC舗装による鋼床版の疲労耐久性向上対策,第12回鋼構造と橋に関する シンポジウム論文報告集,pp.83-96,2009年8月
- 2) 児玉ら:大平高架橋の鋼床版における SFRC 舗装によるひずみ低減効果,第六回道路 橋床版シンポジウム論文報告集,pp.111-120,2008年6月
- 山田ら:SFRCを用いた鋼床版疲労対策工事例,第62回セメント技術大会講演要旨, pp.98-99,2008年5月

5章

5.1) (独)土木研究所,(株)横河ブリッジ,(株)NIPPO, 鹿島道路(株),大成ロテック(株): 鋼床版橋梁の疲労耐久性向上技術に関する共同研究(その2・3・4)報告書— SFRC 舗装による既設鋼床版の補強に関する設計・施工マニュアル(案)—,共同 研究報告書整理番号第 395 号,2009

土木研究所資料 TECHNICAL NOTE of PWRI No.4426 September 2022

編集·発行 ©国立研究開発法人土木研究所

本資料の転載・複写の問い合わせは

国立研究開発法人土木研究所 企画部 業務課 〒305-8516 茨城県つくば市南原1-6 電話029-879-6754