THE MINISTRY OF NATURAL RESOURCES AND ENVIRONMENT NATIONAL REMOTE SENSING DEPARTMENT (NRSD)

THE APPLCATION OF SATELLITE RADAR ALTIMETRY IN VIETNAM

Hanoi, 2017

The Outline

- Water Resource in Vietnam and the role of satellite altimetry in water resource management.
- Introduction to some case studies in satellite altimetry at the National Remote Sensing Department (NRSD).

PART 1

Water Resource in Vietnam and the role of satellite altimetry in water resource management.

Severe Drought and Salinity Intrusion in 2016 in the Mekong Delta Basin, Vietnam

The worst drought and salinity over a century:

- 9/13 provinces with 160 000 ha of cropland was damaged by salinity.
- Fresh water shortage for 600 000 people.

Water Resources in Vietnam

- Depends greatly on the large transboundry rivers such as Mekong river and Red river which account for over 60% of total water volume.
- The computation in water resource management must be done for the whole catchment-area. However, hydrological data from the Upper Mekong region are not avalaible in some case.
- Measurements from the national network of gauge stations almost are not adequate for monitoring.
- Therefore, satellite altimetry can be considered as an alternative way to supply complementary data used to monitor time series of river water level variation.

The advantages and shortcomings of satellite altimetry

- The advantages:
- Global coverage datasets.
- Historical data archive (from 1992).

The shortcomings:

- Temparal resolution (satellite revisit period) that are only from 10 days to 35 days in comparison with the daily precise measurements from "*in situ*" hydrologic stations.
- Distances between grondtracks.
- Not every water body can be monitored.

Principles of Satellite Altimetry

WSH = Alt-R + [DTC + WTC + IC + T]

Where:

Alt is satellite orbit altitude; R is distance measurement; and other corrections includes DTC is the dry troposphere correction, WTC is the wet troposphere correction, IC is the ionosphere correction and T is the solid Earth tides correction.

PART 2

Introduction to some case studies in satellite altimetry at the National Remote Sensing Department (NRSD).

Case Study 1: The Lower Mekong River in Vietnam

Data in use ENVISAT RA-2 18 Hz Provided by EOHelp from 2006 to 2008; Jason-2 20 Hz Provided by the AVISO/CNES (Archiving, Validation and Interpretation of Satellite Data in Oceanography) Data Center from 2009 to 2010.

Virtual Stations

ENVISAT

JASON-2

Statistics on hydrological stations and "Virtual" stations

Mission	Track	Position (WGS-84)	Window width (km)	River width (km)	Station	Distance from station (km)	RMS (m)
Envisat	433	105.290, 10.826 105.312, 10.816	1.50	0.50	Tan Chau	8 (Upstream)	0.629
Envisat	283	105.600, 10.415 105.621, 10.406	1.00	0.40	My Thuan	39 (Downstream)	0.188
Envisat	161	105.888, 10.284 105.908, 10.269	1.60	0.56	My Thuan	l (Downstream)	0.192
Envisat	011	106.338, 10.338 106.360, 10.325	1.50	0.90	My Tho	l (Downstream)	0.500
Envisat	390	106.598, 10.257 106.619, 10.237	2.10	1.40	My Tho	30 (Upstream)	0.419
Jason-2	140	106.117, 10.291 106.139, 10.275	1.70	1.00	My Tho	25 (Downstream)	0.248
Jason-2	077	106.469, 10.292 106.485, 10.276	1.80	0.80	My Tho	15 (Upstream)	0.243

Comparison of altimetry-derived time series of water level variation from ENVISAT and JASON-2 with gauge-derived time series of water level variation

Results on Accuracy Assessment

Mission	Groundtrack	Hydrological Station	RMS (m)
ENVISAT	433	Tan Chau	1.237 (0.499)
ENVISAT	283	My Thuan	0.206
ENVISAT	161	My Thuan	0.222
ENVISAT	011	My Tho	0.384
ENVISAT	390	My Tho	0.437
JASON-2	140	My Tho	0.464

Case Study 2: The Upper Mekong River in China

Some Dams in the Upper Mekong River in China

An Example: Dams Xiaowan

	Đập Tiểu Loan					1260.000 -
						1240.000 -
Latitude	24	51	18.4158	N	WGS84	1220.000 -
Longitude	100	10	32.1633	E	WGS84	1200.000 -
						1180.000 +
						1160.000
						1120.000
Date	Water Level - EGM96	RMS				1100.000 -
19/07/2009	1122.635	0.261				1080.000 -
29/07/2009	1126.606	0.246				1060.000 +
8/8/2009	1127.113	0.544				200
18/08/2009	1154.043	0.437				/10,
28/08/2009	1161.306	0.266				19,
6/9/2009	1162.176	0.325				
16/09/2009	1162.582	0.338				
26/09/2009	1163.425	0.515				
6/10/2009	1165.226	0.453				
16/10/2009	1166.551	0.353				
26/10/2009	1167.160	0.192				
5/11/2009	1167.228	0.344				
15/11/2009	1167.743	0.380				
25/11/2009	1168.620	0.445				
5/12/2009	1168.131	0.308				
15/12/2009	1167.010	0.656				
25/12/2009	1166.740	0.408				
3/1/2010	1165.009	0.260				

Case Study 3: Monitoring dams and reservoirs

- Project in cooperation with the Vietnam National Mekong Committe.
- To monitor the water level variation and volume variation of dams and water reservoirs in the Upper Mekong region from 2018 to 2019.
- Data in use
- Jason-2;
- Jason-3;
- Sentinel-3.

Recent Advance in Altimetry Technique

In 2016, the most important events are the satellites Jason-3 và Sentinel-3 were launched successfully into orbits that applied the advace techniques like SAR that permit to narrow the *footprint* size down to approximatelly 200 m.

Conclusion

Satellite altimetry technology is a useful tool and is feasible in some hydrological applications such as monitoring the water levels variation seasonally or interannually. Satellite altimetry data can be combined with remote sensing imagery to estimate the water flow and water reserves. The source of this data is currently being offered for free for the user community to serve the research, monitoring of water resources and the phenomenon of global climate change.

Thank you!