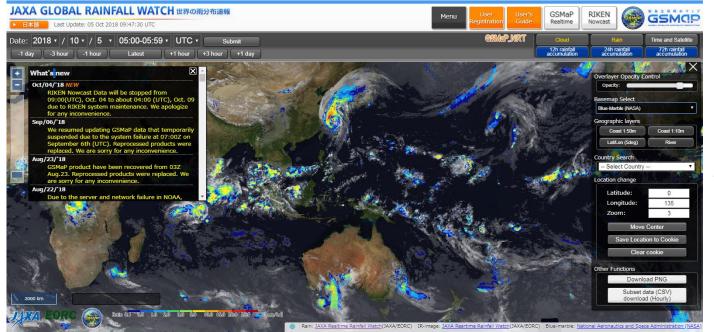


JAXA Earth Observation Satellites Program for water applications

ALOS-2 Project Manager

Shin-ichi Sobue

Recent progress of the GSMaP Products


T. Kubota, R. Oki, M. Yamaji, and S. Sobue Earth Observation Research Center (EORC) Japan Aerospace Exploration Agency (JAXA)

Global Satellite Mapping of Precipitation

(GSMaP)

http://sharaku.eorc.jaxa.jp/GSMaP/


We renewed our website!

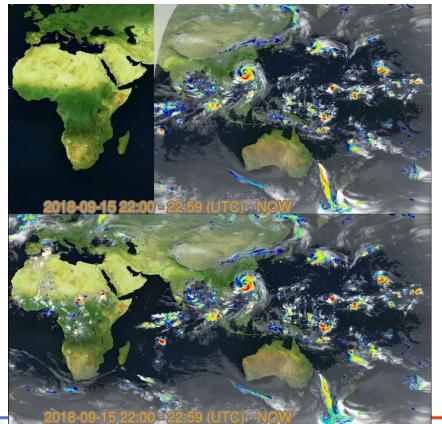
Registered users: 4185 users 114 counties (Sep. 2018)

- GSMaP is a blended Microwave-IR product and has been developed in Japan toward the GPM mission.
 - GSMaP (v6) data was reprocessed as reanalysis version (GSMaP_RNL) since Mar. 2000 period , and was open to the public in Apr. 2016, and new version, GSMaP (v7) was released in 17 Jan. 2017.
 - We submitted a book chapter (Kubota et al. 2018) to review the GPM-era GSMaP products (in the Springer Book on Satellite Precipitation).

Overview of GSMaP Algorithm

http://sharaku.eorc.jaxa.jp/GSMaP/

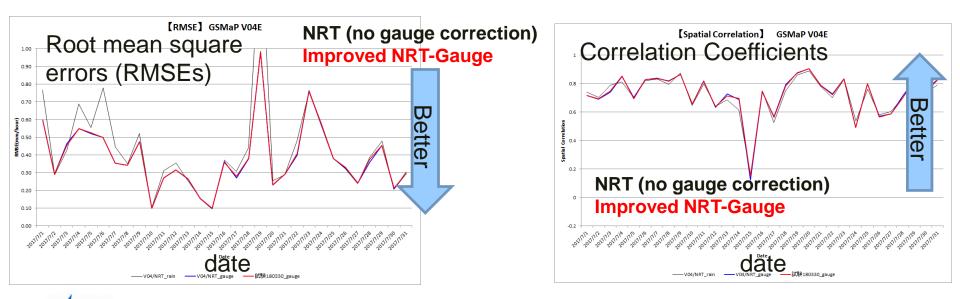
Extension of GSMaP_NOW



- JAXA has provided the GSMaP realtime product (GSMaP_NOW) in the domain of JMA GEO-Himawari since Nov. 2015.
 - The rainfall estimates are provided just now (0hr-latency)
- The GSMaP_NOW domain will be extended to the EUMETSAT GEO region (Meteosat/MSG) in this October.

Current GSMaP_NOW (JMA GEO-Hiimawari region)

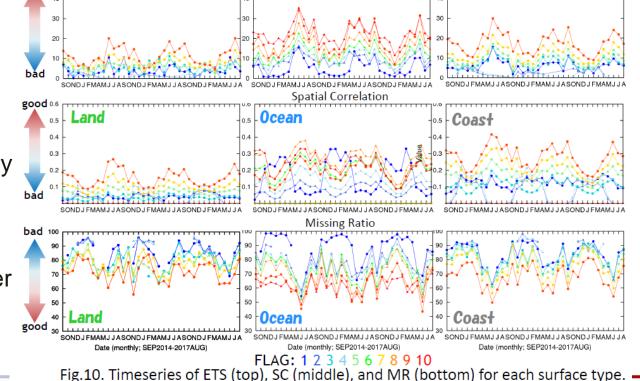
Updated GSMaP_NOW (JMA GEO-Hiimawari region + EUMETSAT Meteosat/MSG)


Extension of the NOAA GOES regions is on-going.

Improved NRT-basis Gauge-adjusted GSMaP product (v6)

- Improved NRT-basis Gauge-adjusted GSMaP product (v6) will be open to the public soon.
 - Correction coefficients are calculated using past 30 days, based upon Mega et al. (2018).
 - We're now reprocessing past 18yr data record (since Mar. 2000)
- Validations with reference to the JMA radar around Japan show smaller RMSEs in this new product than the current NRT (no gauge-correction).

GSMaP Reliability flag is now available


Coast

- GSMaP Reliability flag was open to the public in Apr. 2017.
- Evaluation results using the JMA ground radar show a good relationship between the flag and skills of the GSMaP.

Evaluation results of the GSMaP reliability flag with reference to the JMA radar validation.

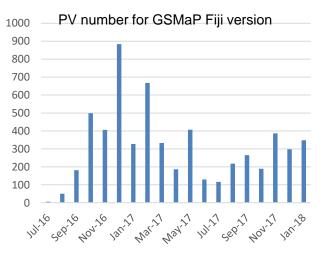
Basically, when the reliability flag is higher, validation results with the JMA radar better.

This was not applicable over the cold ocean. Need to improve the flag.

Ocear

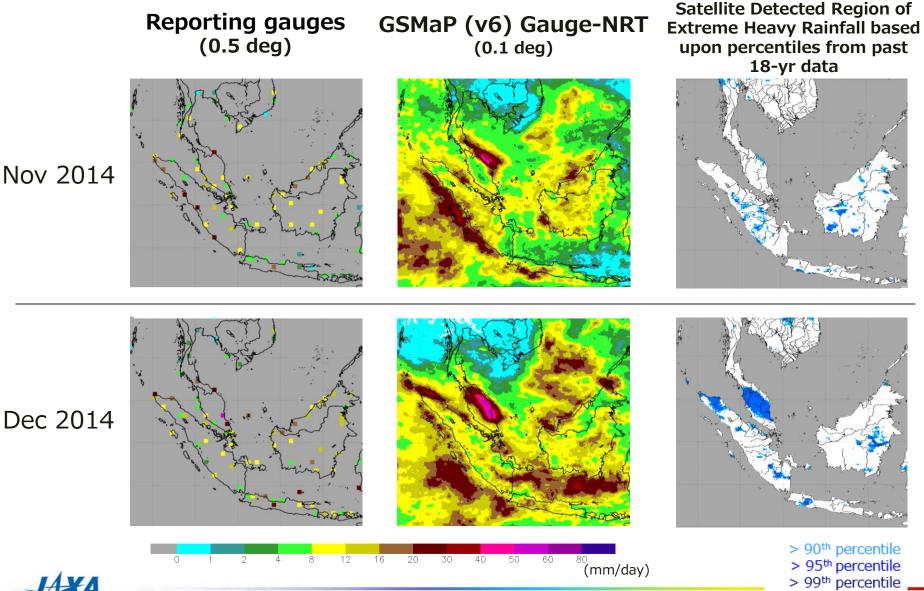
Contributing to rainfall monitoring in Asia-Pacific regions

Met. agencies in the Pacific Islands utilize GSMaP for rainfall monitoring.



Forecaster monitoring weather by using Himawari and GSMaP

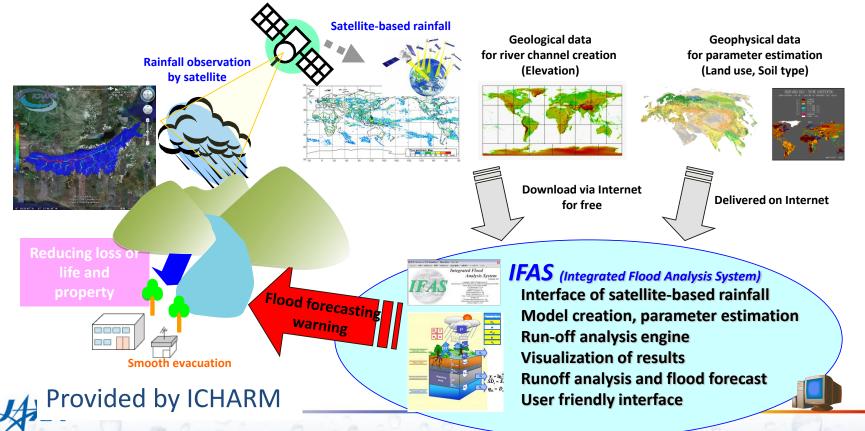
Himawari cast by JMA has been installed and used over many Asia-Pacific countries. Combination utilization of cloud information by Himawari and rainfall information by GSMaP is effective for monitoring weather. GSMaP is useful for monitoring the rainfall around their Islands and over the remote small islands.



GSMaP Fiji ver. website has much access every month. During cyclone season (Dec.2016), the PV number is 824, and local continuous utilization has been confirmed.

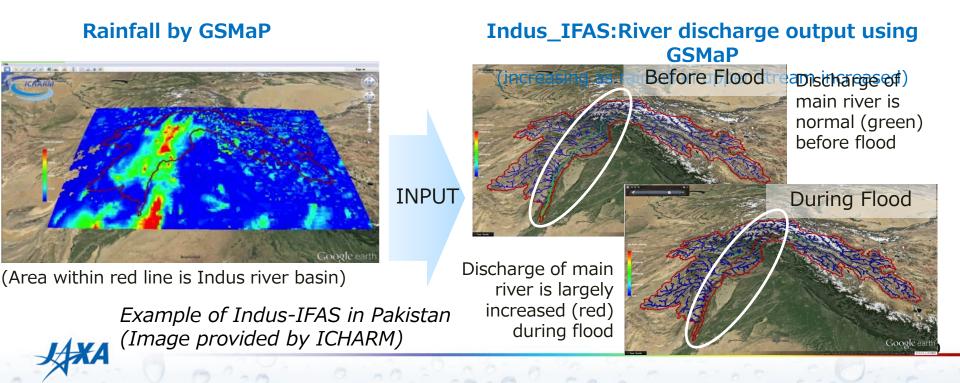
(Photos were taked in each met service)

Examples of Satellite-based Climate Extremes Monitoring

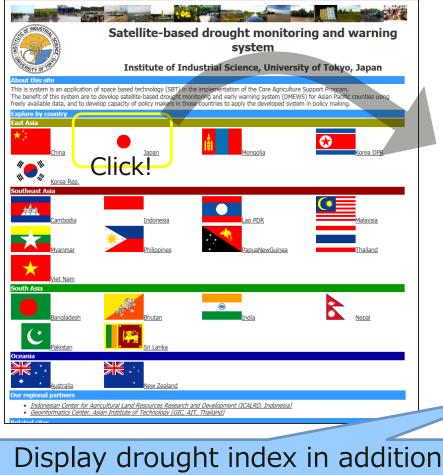


Data utilization in flood warning

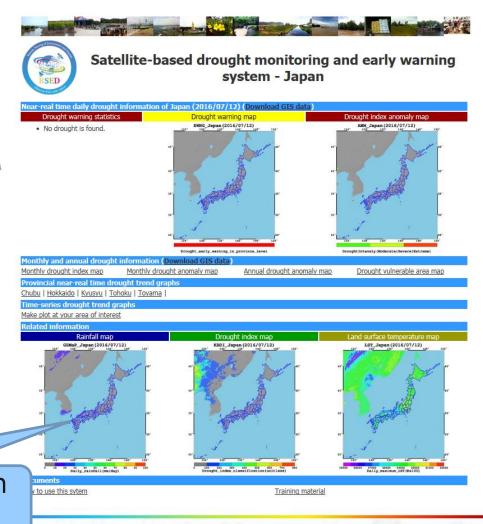
- Collaboration with JAXA and International Centre for Water Hazard and Risk Management (ICHARM) since 2005.
 - Utilization of hourly GSMaP near-real-time data in their flood forecasting system, Integrated Flood Analysis System (IFAS).


Flood Forecasting System Using Satellite-based Rainfall Information as a tool of GFAS-streamflow version

UNESCO Pakistan Project for Predicting Floods



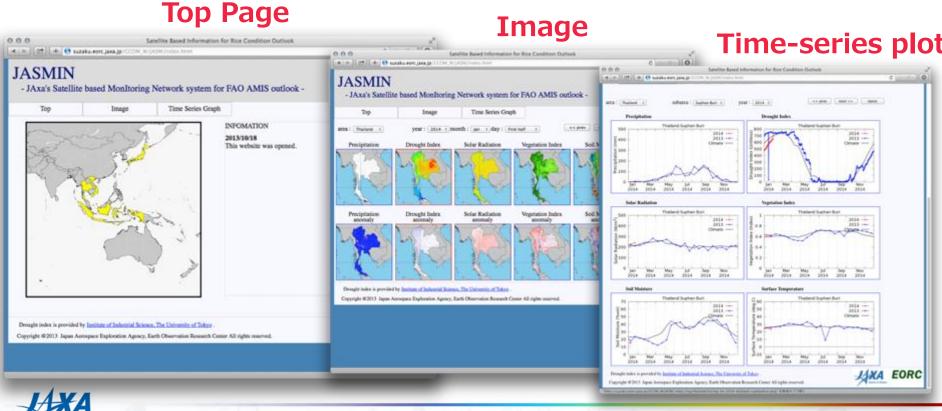
- Under UNESCO-IHP project, JAXA, ICHARM and Pakistan
 Meteorological Department (PMD) to develop operational flood analysis system.
- After calibration of GSMaP product with ground-based stations in Pakistan, correlation coefficients are increased from 0.5 to 0.7, and can be used in the Indus Integrated Flood Analysis System (Indus-IFAS) developed by ICHARM.



Satellite-based drought monitoring

- a the
- Prof. Takeuchi (Univ. of Tokyo) developed drought monitoring system using the GSMaP rainfall and land surface temperature from the Meteorological satellite and operates the website (<u>http://wtlab.iis.u-tokyo.ac.jp/DMEWS</u>).

to the rainfall amount



Agromet Information Database System: JASMIN

[Oyoshi et al., JSPRS., 2016]

- JASMIN (JAxa's Satellite-based Monitoring Network system) provides GSMaP and satellite-based drought index, solar radiation, land surface temperature, soil moisture, and vegetation index (update twice a month).
- These information are used to generate monthly rice growing outlook which is reported to FAO(Food and Agriculture Organization of the United Nations) through GEOGLAM(GEO Global Agricultural Monitoring Initiative).

http://suzaku.eorc.jaxa.jp/JASM/index.html

GSMaP Product list



Product name	Variables	Resolution	Latency	Update interval
Standard product			3 days	1 hour
	Gauge-adjusted Hourly Precip Rate (GSMaP_Gauge)	deg.lat/lon Temporal: 1 hour		
Near-real-time product	Hourly Precip Rate (GSMaP_NRT)		4 hours	
		GSMaP uses NO gauge (2-3 day TRMM 3B42 and NA use GPCC rain gaug monthly). Note latend	atency, daily SA IMERG fina e(2-3 month late	/) I products ency,
Real-time product	Hourly Precip Rate (GSMaP_NOW)		0 hours	0.5 hour

In addition, there are reanalysis products (GSMaP_RNL, GSMaP_RNL_Gauge), calculated with Japanese 55-year reanalysis (JRA55), and GSMaP Riken NowCast (GSMaP_RNC, Otsuka et al. 2016) by AICS/RIKEN.

水循環変動観測衛星「しずく」 Clobal Change Observation Mission-Water "SHIZUKU"

JAXA Global Change Observation Mission (GCOM): Status of GCOM-Water (GCOM-W)

M. Kachi¹⁾, H. Fujii¹⁾, T. Maeda¹⁾, N. Ono¹⁾, M. Kasahara¹⁾, and N. Ebuchi^{1),2)}

¹⁾ Japan Aerospace Exploration Agency

²⁾ Hokkaido University

19 September, 2018 @ @ Tallinn, Estonia EUMETSAT Meteorological Satellite Users Conference 2018

Overview of GCOM-W and AMSR2

Instrument	Advanced Microwave Scanning Radiometer 2 (AMSR2)	
Altitude	705 km	
Orbital inclination	98.2 deg	
Local sun time at Ascending node	13 :30	
Launch vehicle	H-IIA	
Launch	May 18, 2012	
Designed lifetime	5 years	

- ✓ Successor of Aqua/AMSR-E (launched in May 2002), providing continuous data for climate studies and operational applications
- ✓ Joining A-train constellation (same as Aqua) and also GPM constellation
- ✓ Carrying AMSR2, a multi-polarization and multi-frequency microwave imager
- ✓ Observing various water-related ECVs at high spatial resolution
- ✓ Improving on-board calibration target has resulted reduction of annual TB variation due to calibration and improvement of TB stability
- Achieved designed mission life (5-year) on May 18, 2017, and continues observation
 Enough fuels to keep current orbit for more than 15 years

Global Change Observation Missio

AMSR2 Standard Products

	Product	Coverage	Resolution	Release Accuracy	Standard Accuracy	Target Accuracy	Validation Result	Latest version
	Brightness Temperature	Global	5-50km	±1.5K	±1.5K	土1.0K (bias) 土0.3K(random)	< 1.4 K	Ver.2.2
	Total Precipitable Water	Global Ocean	15km	土3.5 kg/m ²	±3.5 kg/m ²	± 2.0 kg/m ²	1.5 kg/m ²	Ver.2.1
	Cloud Liquid Water	Global Ocean	15km	±0.10 kg/m²	±0.05 kg/m²	\pm 0.02 kg/m ²	0.04 kg/m ²	Ver.2.1
G	Precipitation	Global (except high latitude)	15km	Ocean ±50 % Land ±120 %	Ocean ±50 % Land ±120 %	Ocean ± 20 % Land ± 80 %	Ocean 48% Land 86%	Ver.2.1
E O	Sea Surface Temperature	Global Ocean	50km	±0.8 ºC	±0.5 ºC	±0.2 ºC (zonal mean)	0.5 ºC < 0.2 ºC (zonal)	Ver.3.0
	Sea Surface Wind Speed	Global Ocean	15km	±1.5 m/s	±1.0 m/s	±1.0 m/s	1.0 m/s	Ver.3.0
	Sea Ice Concentration	Ocean in high latitude	15km	±10%	±10%	±5%	9 %	Ver.3.0
	Snow Depth	Land	30km	±20 cm	±20 cm	±10 cm	18 cm	Ver.2.1
	Soil Moisture	Land	50km	±10%	±10 %	±5 %	4 %	Ver.3.0

http://suzaku.eorc.jaxa.jp/GCOM_W/research/resdist_j.html

AMSR2 Research Products and Accuracy

Products	Area	Resolution	Target accuracy	Status
All-weather sea surface wind speed	Ocean	60 km	± 7 m/s for strong wind (>17m/s)	Ver.3.0 released 4.07 m/s
High-resolution (10-GHz) SST	Ocean	30 km	± 0.8 ºC	Ver.3.0 released 0.55 °C
Soil moisture and vegetation water content based on the land data assimilation	Africa, Australia (at first stage)	25 km	soil moisture: ± 8% vegetation water: ± 1 kg/m ²	Under development
Land surface temperature	Land	15 km	forest area: ± 3 ºC nondense vegetation: ± 4 ºC	Ver.1.0 released 3 ºC (forest) 4 ºC (nondense vegetation)
Vegetation water content	Land	10 km	± 1 kg/m ²	Under evaluation
High resolution sea ice concentration	Ocean in high latitude	5 km	± 15 %	Under evaluation
Thin ice detection	Global	15 km	± 80 % (answered correctly)	Consideration to release 92.4 % for Okhotsk sea
Sea ice moving vector	Ocean in high latitude	50 km	2 components: 3 cm/s	Under evaluation
Total Precipitable Water over Land	Land (except ice and vegetation)	15 km	\pm 6.5 kg/m ²	Newly Proposed 2.59 kg/m² vs. GPS

Released to publicTo be releasedNewly proposed

JAXA Global Change Observation Mission (GCOM): Status of GCOM-Climate (GCOM-C)

Murakami H , Kachi M* , Nakajima T

JAXA EORC EUMETSAT 2018 - Meteorological Satellite Conference 17 to 21 September 2018, Tallin, Estonia

GCOM-C launch on 23 Dec. 2017

1. GCOM-C/SGLI: observation channels

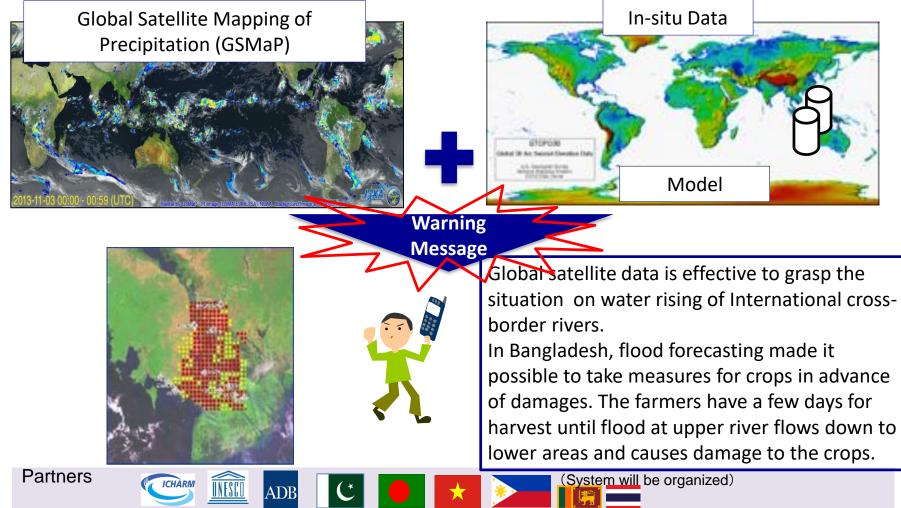
Sub- system	channel	Center wavelength	width	Standard radiance	Saturation radiance	SNR	Pixel size	
в '		nm		$W/m^2/sr/$	μm or Kelvin	ΤΙ: ΝΕΔΤ	m	NUV band
	VN01	379.9	10.6	60	240-241	624-675	250 /1000	
	VN02	412.3	10.3	75	305-318	786-826	250 /1000	Ocean color
	VN03	443.3	10.1	64	457-467	487-531	250 /1000	
	VN04	490.0	10.3	53	147-150	858-870	250 /1000	Absorption by pigments
	VN05	529.7	19.1	41	361-364	457-522	250 /1000	<i>√ 250-m</i>
	VN06	566.1	19.8	33	95-96	1027-1064	250 /1000	
	VN07	672.3	22.0	23	69-70	988-1088	250 /1000	Vegetation
	VN08	672.4	21.9	25	213-217	537-564	250 /1000	
VNR	VN09	763.1	11.4	40	351-359	1592-1746	250/1000	✓ ✓ Multi-angle
	VN10	867.1	20.9	8	37-38	470-510	250 /1000	
	VN11	867.4	20.8	30	305-306	471-511	250 /1000	Aerosol
	PL01 +60				295	609		√ <i>Polarization</i>
	PL01 +0	672.2	20.6	25	315	707	1000	
	PL01 -60				293	614		Scattering by particles
	PL02 +60				396	646		
	PL02 +0	866.3	20.3	30	424	763	1000	Cloud, Snow/Ice
	PL02 -60				400	752		
	SW01	1050	21.1	57	289.2	951.8	1000	
	SW02	1390	20.1	8	118.9	347.3	1000	Absorption by water/ice
IRS	SW03	1630	195.0	3	50.6	100.5	250 /1000	
S	SW04	2210	50.4	1.9	21.7	378.7	1000	Land/Sea/Snow
	TI01	10785	756	300K	340K	0.08K	250 /500/1000	surface temperature
	TI02	11975	759	300K	340K	0.13K	250/500/1000	Thermal emission $\sqrt{250-m}$

Cited from Okamura et al., 2018. SNR is defined at the standard radiance and IFOV shown by bold characters

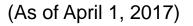
√ 250-m

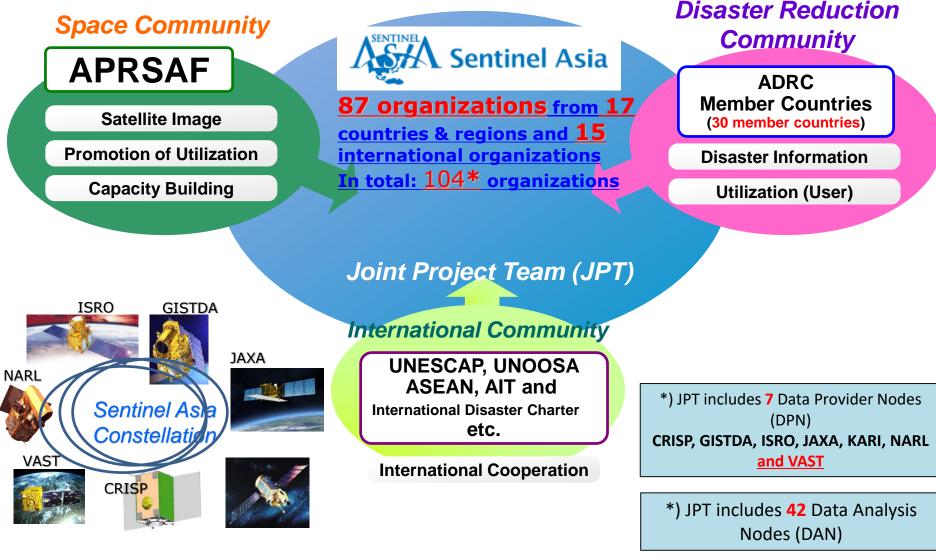
19

1. GCOM-C/SGLI: standard products

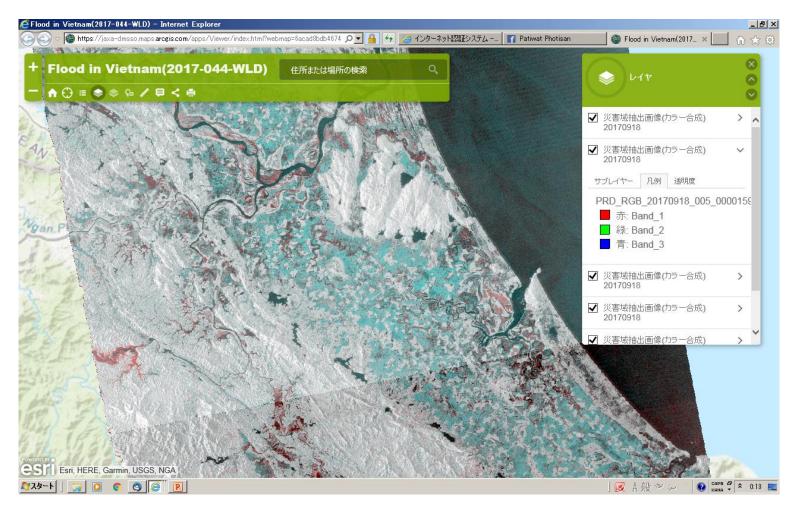

Area	Group	Standard Product	Grid Size
Commo n	Radiance	Top-of-atmosphere radiance (including system geometric correction)	VNR, SWI: Land/coast: 250 m, offshore: 1 km, polarimetry: 1 km TIR: Land/coast: 500 m, offshore: 1 km
	Surface reflecteres	Precise geometric correction	250 m (equal-area grid (EQA) tile)
	Surface reflectance	Atmospheric corrected reflectance	250 m (EQA tile)
		Vegetation index Shadow index	250 m (EQA tile)
Land	Vegetation and carbon cycle	Above-ground biomass Vegetation roughness index	1 km (EQA tile)
		Fraction of absorbed photosynthetically active radiation Leaf area index	250 m (EQA tile)
	Temperature	Surface temperature	250 m (EQA tile)
		Cloud flag/Classification	1 km (EQA tile)
Atmosphere	Atmosph	Classified cloud fraction Cloud top temp/height Water cloud optical thickness/effective radius Ice cloud optical thickness	1 km (EQA tile), 1/12 deg (global)
re	Aerosol	Aerosol by non-polarization Aerosol over the land by polarization	1 km (EQA tile), 1/12 deg (global)
0	Ocean color	Normalized water leaving radiance Atmospheric correction parameters Photosynthetically available radiation	250 m (coast), 1 km (offshore), 1/24 deg (global)
Ocean	In-water	Chlorophyll-a concentration Suspended solid concentration Colored dissolved organic matter	250 m (coast), 1 km (offshore), 1/24 deg (global)
	Temperature	Sea surface temperature	500 m (coast), 1 km (offshore), 1/24 deg (global)
Cr		Snow and Ice covered area	250 m (EQA tile), 1 km (EQA tile)
.yos		Okhotsk sea-ice distribution	250 m (scene)
Cryosphere	Surface properties	Snow and ice surface temperature Snow grain size of shallow layer	250 m (EQA tile), 1 km (EQA tile)

20


Disaster Risk Management Flood Early Warning


- ✓ Satellite data and in-situ data are merged to predict flood of lower river region several days before.
- Based on this information, the warning and evacuation call are GCOM-W sent directly to residents.

Sentinel Asia

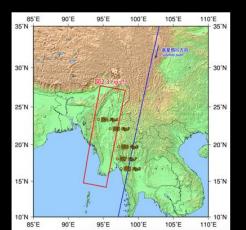


ALOS-2: Advanced Land Observing Satellite -2

Characteristics of ALOS-2

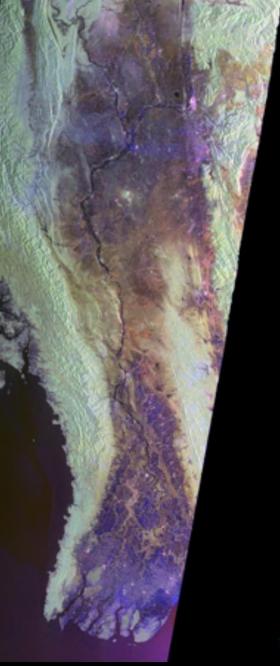
- World's Top Observation Duty
- Autonomous Precise Orbit Control
- Emergency Observation is possible after One hour of Setting up

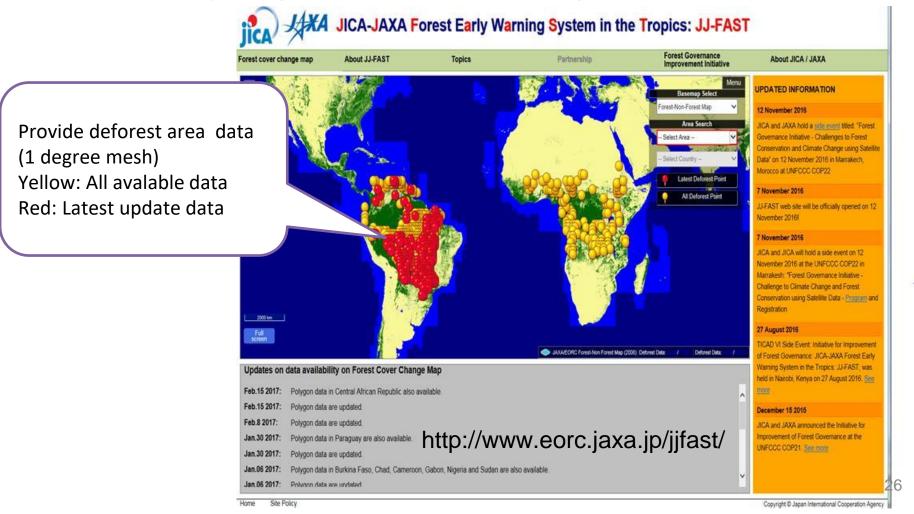

Inundation area estimation by Sentinel-Asia using ALOS-2



http://arcg.is/2h8rS7f

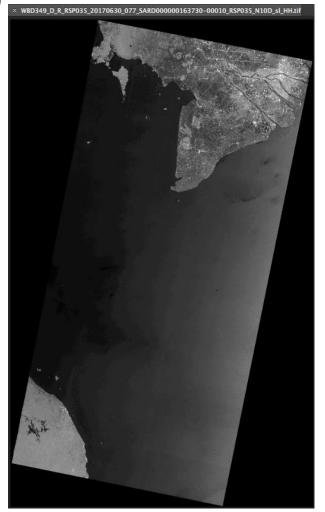
Inundated Area Detection Using RADAR Data


Rainfall Anomaly by GSMaP


ALOS-2 ScanSAR Mode (R:G:B = HH:HV:HH/HV) 28th July 2015

JICA-JAXA Forest Early Warning System in the Tropics (JJ-FAST)

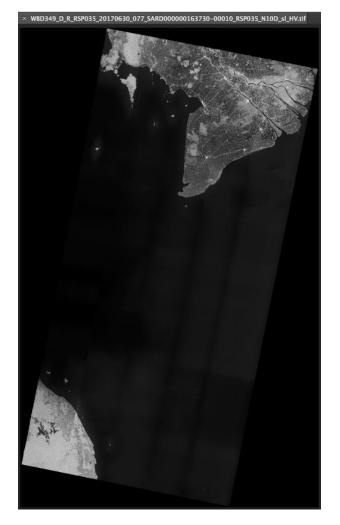
- ScanSAR Ortho-slop corrected DN data will be processed during production of forest cover change (deforest / logging area)
- ADB INAHOR project countries and APRSAF SAFE prototyping country (Indonesia, LaoPDR, Philippine, Thailand and Vietnam) ScanSAR data will be freely accessible from JAXA archive from next year.under JJ-FAST for those countrys' own government use under a bilateral agreement


ALOS-2 ScanSAR data specification for GFOI and other applications(DRAFT)

Product characteristics as ARD (under discussion)

- Path data
- Polarisation: HH + HV
- Gamma-0
- Image size: arbitrary
- Pixel spacing: 50 m
- Image segment start & end: arbitrary
- Orho & slope correction by SRTM1
- Data type: 16 bits UInt
- File format: GeoTIFF
- Temporal resolution: every 1.5 months (9 times per a year (target)
- Spatial resolution: All paths in target region

Limitations:


- Indonesia, Thailand, LaoPDR, Cambodia, Vietnam
- For non commericail users only authorized by space related agencies in target countries

PALSAR-2 ScanSAR (HH) 30 June 2017

ALOS-2 ScanSAR data samples

Tag	Description
origin	Image courtesy
satellite	satellite name
instrument	instrument name
file_name	File name
product	Path or Tile
obs_date	Observation date
polarization	Types of polarization
rsp	Number of Path
cycle	Observation cycle
obs_mode	Observation Mode
off-nadir_angle	Off-nadir angle [deg]
	Orbit Direction
cotallita direction	D:Descending
satellite_direction	A:Ascending
	Observation Direction
	L: Left looking
look_side	R: Right looking
replay_id	Downlink ID
version	Software release and revision number
DEM	Digital Elevation Model
upper_left_latitude	Upper left latitude
upper_left_longitude	Upper left longitude
pixel	Number of pixels
line	Number of lines
data_type	UInt16:Unsigned short integer 16-bit
	Permutations of dimensions in binary data
	BSQ - Band Sequential (X[col,row,band])
interleave	BIL - Band Interleave by Line (X[col,band,row])
	BIP - Band Interleave by Pixel (X[band,col,row])
collibration equation	The equation for convering digital number to
calibration_equation	backscattering coefficient (gamma-naught, dB)
calibration_factor(CF1)	CF1 value
calibration_info_url	ALOS-2 callibration website

PALSAR-2 ScanSAR (HV) 30 June 2017

Data header

Thank you very much for your attention.

sobue.shinichi@jaxa.jp

@Tsuruoka, Yamagata Pref. TDS Site in Japan

