Title	Research on Enhancing and Equipping Existing Dams for Better Flood Control Using Flood Forecasting
Background &	In recent years, severe water-related disasters caused by unprecedented heavy rains have
Needs	occurred annually throughout Japan. There is no doubt that global warming is causing
	climate change, and rainfall events are anticipated to become more extreme, resulting in
	more severe flood and drought damage. In response to these circumstances, including the
	2019 typhoon, which caused significant damage to eastern Japan, the Ministry of Land,
	Infrastructure, Transport and Tourism in Japan has decided to take necessary actions in no
	time to maximize the use of the effective storage capacity of existing dams for flood control
	in emergencies and adopted the basic policy for enhancing the flood control functions of
	existing dams in December 2019.
Goals	To develop technologies to forecast rainfall and flooding several days in advance with high
	levels of accuracy for more effective preliminary dam discharges to reduce river flooding.
	To develop dam operational procedures according to levels of forecasting accuracy.
	To improve the accuracy of rainfall and runoff forecasting using ensemble forecasting.
Method &	We developed a river-runoff ensemble forecasting system consisting of a rainfall ensemble
Outcomes	forecasting system that can quantify the range of uncertainty in rainfall forecasts and WEB-
	DHM-S, which is a hydrological model that can seamlessly calculate different types of
	events from floods to 貯水位 流量 降水量
	droughts, including [m] [m ³ /s] 大井川畑薙第一夕厶、協力:中部電力 [mm] 950 3000 2018/08 10 2 2018/08 10 2 2018/08 10 2 2018/08 10 2 2018/08 10 2 2018/08 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	snowfall and snowmelt. 940 2500
	Using rainfall 930 2000 ① 満水 ① 世界不知道 ⑦ 貯水回復
	ensemble-forecast data.
	wEB-DIIW-3 produces 32 ensemble- 0
	forecast dam inflows. $\frac{29}{30} = \frac{30}{100} = \frac{100}{100}$
	──常時満水位 ──貯水位(実測) □───放流量(実測) ────流入量(実測) The dam operation can ──予備放流水位──貯水位(計算) □───放流量(計算) □────流入量(実測)
	be optimized considering the range of these 32 predicted inflows, in other words, based on
	the inflow forecasts in the upper section of the range if the operation prioritizes flood
	control or in the lower section of the range if the operation prioritizes water storage for
	more hydropower generation. We simulated the operation of the Hatanagi First Dam built
	on the Oi River by applying the following procedures. Supposing the dam reservoir is full
	at the start of dam inflow forecasting, a preliminary dam discharge is conducted to lower
	the dam reservoir's water level and create a flood control capacity for coming inflow. The
	inflow is stored in the reservoir to keep the gate discharge at 600 m3/s or less, which is the
	safe discharge level to protect downstream areas. The dam stores water up to the reservoir's
	high water level after the flooding time. The simulations using this approach for the warm
	season (July to October) in 2018 indicated a 12.7% increase in power generation. This
	method is applicable not only to domestic dams but also to overseas dams and is a

	promising technology that can significantly contribute to carbon neutrality in addition to
	improved flood control in many countries.
Collaborators	The University of Tokyo, Nippon Koei Co., Ltd., Chubu Electric Power Co., Inc., TEPCO
	Renewable Power, Incorporated
Duration	FY2022-FY2027
Researchers	Chief Researcher: KUBOTA Keijiro; Senior Researchers: Mohamed Rasmy Abdul Wahid,
	USHIYAMA Tomoki; Research Specialist: TAMAKAWA Katsunori