ICHARM Work Plan

FY 2021 (2021.4-2022.3)

	Category	Content	Activities and expected results
	· · · · · · · · · · · · · · · · · · ·		in FY2021
(1) Innovative research	· · · · · · · · · · · · · · · · · · ·	
(a) Technology for constantly m	onitoring, storing and using dis	saster information
	Methods will be proposed for	disaster data collection and ba	sic database development with their practical applications. This should eventually lead to data
	analysis using a Data Integrat	tion and Analysis System (DIA	S). A data correction method will be also proposed to be used in the process of building a
	database using global data an	d near-real time data from sate	llites. The impact of disaster reduction will be assessed quantitatively by the disaster database
	including its use in model are	as both in Japan and overseas.	
	(i)-(a)-1. Research on	Develop a simple method	In collaboration with GRIPS, assess the impact of indirect damage using a simple damage
	simple methods for	for assessing the socio-	estimation method employing macroeconomic indicators for Joso City, which suffered
	assessing the socio-	economic impact of flood	extensive damage from the 2015 Kinugawa River flood, and its neighboring municipalities of
	economic impact of flood	disasters	a similar size, which did not suffer any damage.
	disasters	Among the developed	While remaining unable to collect data from the Philippines due to the COVID-19 pandemic,
		simple methods for	continue to apply the simple damage estimation method to the Philippines and Indonesia. Also
		assessing the socio-	implement climate change adaptation measures in Davao, the Philippines, using the Online
		economic impact of flood	Synthesis System (OSS) with e-learning as the main component.
		disasters, test a globally	
		applicable method by	
		estimating such impact at	
		national and global levels.	
(b) Support system for early war	ming capable of providing accu	arate information in a shorter period of time
	More advanced application of	f a regional atmospheric model	(WRF) and further improvement of IFAS and RRI will be achieved. Using these advanced
	technologies, a method will b	e developed for more accurate	real-time prediction of rainfall, runoff and inundation to ensure over 10 hours of lead time
	necessary for evacuation in a	wide area and dam discharges	prior to rainfall. The developed method will be tested for applicability to river basins both in
	Japan and overseas with diffe	rent conditions of data availab	ility, climate and topography, and eventually used to establish an early flood warning and
	system. A technology will be	developed to evaluate water di	saster hazards by using satellites and sediment hydraulic models.
	(i)-(b)-1. Research on	Improve the accuracy of the	Develop methods for creating RRI models for rivers for which the relationship between the
	technologies for more	flood inundation prediction	water level and the flow rate is unknown due to the lack of river channel and other information
	accurate real-time	model by upgrading the	and rivers with no flood events or insufficient flood observation data. Develop methods for

_			
	prediction of runoff and	flood tracking method and	estimating parameters based on the characteristics of rivers by utilizing the verification results
	inundation by	introducing an automatic	obtained so far.
	complementing insufficient	parameter optimization	
	data availability	method.	
		Clarify the applicability of	Continue verifying this method by applying it to different regions since the precipitation
		satellite rainfall data and	phenomenon varies locally to a great degree.
		develop a basin-specific	Study issues related to the development of components, which will be applied to RRI and other
		data correction method.	models.
		Improve the accuracy of the	Improve the prediction accuracy for hard-to-predict phenomena such as rain fronts and
		WRF model for heavy	localized heavy rains by evaluating possible effects that may be caused by increasing the
		rainfall prediction using X-	number of ensemble members and the coverage and resolution of meteorological models, as
		and C-band MP radars and	well as by changes in other factors.
		the Ensemble Kalman filter.	
		Develop a method for real-	Conduct real-time flood inundation forecasting, while considering uncertainties, for river
		time flood inundation	basins in Japan and overseas by inputting ensemble rainfall forecasts to the flood inundation
		forecasting using multiple	model in real time.
		rainfall forecasting	
		approaches with prediction	
		uncertainty.	
	(i)-(b)-2. Development of	Estimate sediment transport	Verify a new sediment transport evaluation method for usefulness by using it for the analyses
	technologies using satellites	and develop an estimation	of two-dimensional flood flows and riverbed changes in rivers. The method was developed last
	and sediment hydraulic	method of river channel	year to analyze the behavior of fine sediment by applying the entrainment theory to density
	models for assessing the	topography change.	currents.
	impact of water disaster	Develop a flood damage	Carry out detailed analyses of two-dimensional flood flows and riverbed changes, using the
	hazards	risk mapping method that	methods developed last year for the disasters such as the Kuma River flood in 2020. In
		takes sediment hydraulic	particular, closely analyze riverbed changes in river channels, and propose a quantitative
		phenomena into account.	evaluation method for inundation risk due to riverbed rise.

	1		
	Develop a method for mapping flood inundation risk in mountainous rivers.	Apply the prototype of the model, developed last year to estimate the sediment runoff in the entire basin during a heavy rain event, to river basins such as Oi and Kurobe rivers and verify it using the sedimentation data of the dams. Also create estimated flood inundation maps for	
		these river basins.	
(c) Assessment and planning tec	hnology for appropriate water	resources management with insufficient information	
A long-term water balance sin	mulation technology will be de	veloped to support optimal planning of water resources management both in Japan and	
overseas. This technology with	ll offer a variety of functions to	support highly technical dam operation integrating flood control and water use, water demand	
settings, soil moisture conten	t settings based on satellite obs	ervation technology, application to a wide range of climate categories, input of highly detailed	
topographical, geological and	l other data.		
(i)-(c)-1. Development of a	Improve technologies for	Carry out water balance simulation by incorporating short-term rainfall forecasts (39 hours)	
simulation system to	integrated water resources	and seasonal precipitation forecasts (1 month/3 months) and study highly optimized dam	
provide long-term support	management.	operations for flood control and water use, such as preliminary dam release and snowmelt flood	
for integrated water		control.	
resources management	Study soil moisture content	Study a method to use soil moisture content and other factors, obtained from satellite remote	
under different natural and	based on satellite data.	sensing and data assimilation methods, in hydrological runoff modeling in order to improve	
topographical conditions		the applicability to water resource management analysis.	
	Improve the applicability of	Study the combination of more advanced evapotranspiration and snowmelt models with runoff	
	systems and models to	analysis models to expand the applicability to river basins with different climate and land	
	rivers in Japan and overseas	conditions.	
	with different climate		
	conditions.		
(i)-(c)-2. Integrated	Assess water disaster risk in	Continue the ongoing projects in Indonesia and the Philippines to produce future precipitation	
Research Program for	Asia and create information	information using a dynamic downscaling method and estimate flood and drought damage	
advancing Climate Models	on adaptation measures.	risks using WEB-RRI by collecting data and information on topography, past inundation areas,	
(TOUGOU) (MEXT		land use, water use, etc., in cooperation with local researchers and government officials.	
program)		Also develop and introduce OSS to support local experts in the implementation of climate	
		change adaptation measures.	
(d) Technology for assessing the impact on local communities of water related disasters in flood plains and for evaluating the effect of investments in disaster			
risk reduction			

A disaster risk assessment method will be developed to evaluate "strength against fatal damage" and "resilience for speedy restoration". Indices will be proposed to help policy makers in Japan and overseas easily recognize local disaster risks and holistically evaluate the effect of investments on disaster risk reduction so that they can make informed investment decisions. A method will be proposed for building disaster resilient communities in Japan and overseas by using the developed risk indices.

(i)-(d)-1. Research on a	Propose a highly accurate	Establish an advanced risk estimation method considering the relationship between damage
multifaceted water disaster	and advanced method for	and resilience according to business type, inundation depth, lifeline utility damage and other
risk assessment for	multifaceted evaluation of	factors, based on the results of the investigations conducted in Joso City after the Kanto-
worldwide use and a	disaster risk	Tohoku heavy rain disaster in September 2015 and in Hiroshima and Okayama prefectures
disaster-resilient		after the heavy rain disaster in July 2018.
community building		Upgrade the risk estimation method to factor in damaged parts of a house and inundation depth,
method based on the		based on the results of the investigations conducted in Joso City after the Kanto-Tohoku heavy
assessment		rain disaster in September 2015 and in Iwaizumi Town, Iwate Prefecture, after Typhoon No.10
		in 2016.
	Propose risk indices to	Propose an index capable of holistically evaluating flood damage to help determine whether
	holistically evaluate the	communities can maintain themselves even after a disaster. The index will be devised from
	disaster risk reduction effect	estimated population outflow rates calculated based on an investigation which asked disaster-
	of disaster prevention	affected residents in Iwaizumi Town, Iwate Prefecture, whether or not to relocate to other
	measures and investments	places.
		Also propose an index focusing on the damage level at which the pre-disaster regional gross
		product can be maintained, based on data on changes in the regional gross product of
		municipalities after past flood disasters.
	Propose a method for	Study measures to build the resilience of local communities to possible hazards, based on the
	building disaster resilient	evaluation index proposed above.
	communities in Japan and	
	overseas by using the	
	developed risk indices.	

(e) Technology for the effective use of water related disaster risk information to reduce disaster damage

An information system, as well as communication tools such as disaster response timeline tables, will be developed to support disaster management efforts by administrators and local residents to prevent or mitigate flood and sediment disasters. The effective use of such a system and tools will be proposed.

_			
	(i)-(e)-1. Research on a	Propose a method for	Apply the developed flood risk assessment tool to other municipalities (e.g., Tsukuba City).
	water disaster risk	identifying areas vulnerable	
	information delivery system	to disasters (disaster hot	
	to support local disaster	spots) prior to disasters.	
	management efforts in areas	Propose a method for	Conduct a demonstration experiment using the ICHARM Disaster Risk Information System
	with insufficient water	forecasting the possibility	(IDRIS) developed as a Web-GIS information delivery system in the previous year. Also link
	disaster information	of a water-related disaster	IDRIS with short-term flood forecasts for small and medium rivers on DIAS.
		by community in real time.	
		Propose a Web-GIS water-	Improve IDRIS for more stable operation by routinizing its maintenance. Also update IDRIS
		related disaster risk	to enhance its usability with recent WEB technologies and smartphones.
		information delivery system	Develop a new system to help optimize resources for water-related disaster response by sharing
		that helps accumulate and	experiences and knowledge of water-related disaster response during and after the COVID-19
		share various types of	pandemic. This will be realized by coupling IDRIS on DIAS with BOSS and SHIFT.
		disaster risk information	
		and deliver evacuation	
		information.	
		Propose the effective use of	Improve the Web-GIS information delivery system into the one capable of assisting local
		the Web-GIS information	governments in sharing information that contributes to their efforts in disaster prevention and
		delivery system to	mitigation by promoting cooperation among local disaster prevention officers in Japan and the
		stakeholders of local	IFI implementing countries.
		administrative bodies in	1 0
		Japan and overseas.	
	(i)-(e)-2 Development of	Develop a DIAS-based	Apply the high-end VR developed for Hita City, Oita Prefecture, to the city and other areas.
	risk communication	simulation system that can	Continue to conduct activities related to Aga Town, Niigata Prefecture: collect detailed spatial
	systems to increase public	seamlessly reproduce,	information by conducting surveys using drones and ground laser instruments; reproduce
	awareness of water-related	predict and visualize	inundation events using the RRI model and the sediment-driftwood-inundation model; and
	disasters and risk	meteorological and	integrate collected data and information using the Construction Information Modeling (CIM).
	management	hydrological events and	Also create a preliminary version of VR flood contents based on collected information to share
	-	related damage.	flood experiences as well as record and hand down past events, experiences and knowledge to

			future generations.	
		Develop a more effective	Identify prime determinants influencing people's psychological change and behavioral choice	
		risk communication system	during evacuation by conducting experiments to observe evacuation behavior in a virtual flood	
		by incorporating	event. The experiments will be conducted using a virtual evacuation drill tool developed in the	
		neverbological factors	previous year that allows several people to experience a virtual flood event at once using a	
		psychological factors.	aloud service. Also improve the IDPIS application to be a comprehensive flood risk	
			communication tool by counting the amplication with the VD execution drill tool	
	1	Carting and IST	Communication tool by coupling the application with the VK evacuation drift tool.	
(1)-(e)-3. Lo	cal practice	Continue supporting JS1-	Develop a high-resolution flood inundation analysis model and conduct flood inundation	
using resear	ch results	JICA SATREPS, a project	analysis based on multiple flood scenarios for the Rojana industrial park in Ayutthaya Province,	
		to develop an Area-BCM	Thailand. Develop business impact analysis (BIA) and regional business continuity	
		(Business Continuity	management (Area-BCM) for the industrial park, using the results of the flood inundation	
		Management) system to	analysis. Also start developing a high-resolution flood inundation analysis model for Bang Pa-	
		strengthen the disaster	in, High Tech and other industrial parks.	
		resilience of Thailand's		
		industrial parks.		
		JST-JICA SATREPS, The	Test flood and drought risk evaluation for the basins of the Pampanga, Pasig, Marikina and	
		Project for Development of	Lake Laguna in Luzon Island, the Philippines, using a model developed by coupling the WEB-	
		a Hybrid Water-Related	RRI model with SIMRIW, a crop-growth prediction model. Conduct test runs of simple	
		Disaster Risk Assessment	calibration using satellite images since model calibration using local data is impossible due to	
		Technology for Sustainable	the COVID-19 pandemic. Evaluate the post-disaster resilience of areas affected by Typhoon	
		Local Economic	Ulysses (No.22), which made landfall on November 12, 2020, using data already available for	
		Development Policy under	the public and data available even under the pandemic and compare the areas' resilience to	
		Climate Change in	Typhoon Ondoy in 2009 and Typhoon Pedring in 2011.	
		Philippines (new project)		
(ii) Effective C	ii) Effective Capacity Development			

(1) Train solution-oriented practitioners and Training-of-Trainers (TOT) instructors with solid theoretical and engineering competence who will contribute effectively to the planning and practice of disaster risk management at local and national levels.

_			
	(ii)-(1)-1. Capacity	Doctoral Course	Accepts 2-3 people (2021-2022).
	development for	"Disaster Management"	
	professionals who can train		
	and supervise local		
	researchers		
	(ii)-(1)-2. Capacity	Master's Course	For 2021-22, we will accept about 14 people from the target countries decided based on the
	development for experts	"Water-related Disaster	results of each country's request survey.
	with practical solutions to	Management Course of	Inform relevant countries of the thorough submission of English proficiency qualifications at
	local problems on water-	Disaster Management	the time of application
	related disasters	Policy Program"	
	(ii)-(1)-3. Days- and weeks-	Short-term training	Conduct lectures and exercises in cooperation with JICA-sponsored thematic training
	long training to learn		"Measures for Mitigating Water Disaster Damage". Training for FY2020 will be conducted
	knowledge and		online from May 26-28, 2021.
	technologies for water-	Hold follow-up seminars	Visit one country and hold follow-up seminar. (We will also consider holding a web seminar
	related disaster risk	for ICHARM master's	for multiple countries about once every four years.)
	management	program graduates and	
		others.	
(2	(2) Build and strengthen a network of local experts and institutions involved in water-related disaster management by providing knowledge and skills		
a	ccumulated from research and	local practice for training in int	ernational projects and ICHARM's educational and training programs.
	(ii)-(2)-1. Follow up and	Hold workshops in ex-	Create and maintain trainees list.
	encouragement for ex-	trainees' countries.	Using Facebook, build a network of trainees and provide training activities information.
	trainees		Hold a follow-up seminar.
(i	ii) Efficient information netwo	rk	
(1	(1) Collect, analyze and disseminate the records and experiences of major water-related disasters around the world as the comprehensive knowledge center		
fo	or practitioners.		
	(iii)-(1)-1. Collection and	Promote collaboration with	Develop a framework for the efficient collection of water-related disaster information which
	organization of disaster-	other organizations and	support, for example, assessing and evaluating the socio-economic impact of flood disasters
	related records and	collect water disaster	using big data processed by DIAS, and promote the sharing and effective use of the collected
	documents	information.	information.

	(iii)-(1)-2. Collaboration	Promote the collaboration	Promote the collaboration for collecting abundant, reliable disaster information with
	with other organizations	with other organizations	international organizations (WMO, UNDRR, etc.), the University of Tokyo and its DIAS
		and collect water disaster	project, and other UNESCO Centres and Chairs.
		information.	Strengthen the collaboration with water-related disaster management agencies of each country
			through an IFI Platform on Water Resilience and Disasters.
(2	2) Mainstream disaster risk red	uction by disseminating knowle	edge and technology for water-related disaster risk management and building and maintaining
a	worldwide influential network	such as IFI.	
	(iii)-(2)-1. Collaboration	Fulfill the duties as the IFI	Carry out the responsibilities as the IFI secretariat in collaboration with the participating
	with relevant organizations	secretariat.	organizations, including reviewing the concept of IFI and other issues at the Advisory
			Committee meeting at the opportunity of ICFM8 scheduled in August 2021 and holding
			periodical Management Committee teleconferences.
			Continue efforts to disseminate IFI activities at various major international conferences such
			as ICFM8 and AOGEO and in collaboration with relevant organizations such as ADBI.
			Promote the partnership with the IFI implementing countries and relevant organizations.
		Support local efforts led by	Support the Philippines, Myanmar, Sri Lanka, and Indonesia in establishing the Platforms on
		IFI.	Water Resilience and Disasters, developing the implementation plans, and promoting related
			activities based on them. Continue efforts to expand IFI activities to other Asian countries,
			Africa and Latin America.
			Promote e-learning for engineers and other experts engaged in water-related disaster
			management and study issues toward developing the Online Synthesis System (OSS) and
			fostering Facilitators in collaboration with relevant organizations.
		Play a leading role in	Fulfill the duties as the WGH chairperson and promote the AOP7 "Platform on Water
		Typhoon Committee (TC).	Resilience and Disasters under International Flood Initiative" in collaboration with the WGH
			Members.
			Enhance collaborative activities for promoting AOP7 with JMA, a WGM Member, and the IFI-
			relevant organizations of the Philippines.
			Organize the 10th WGH meeting in Japan in collaboration with MLIT and participate in the
			16th IWS meeting and the 54th Annual sessions as WGH chairperson to summarize discussions

		on typhoon-related disasters in the TC region and contribute to developing and applying
		effective measures in collaboration with the Members.
	Japanese Ministry of	Participate in the following activities in response to the request from MOFA to participate in
	Foreign Affairs (MOFA)	IAEA activities:
	and the International	1) Participate on behalf of Japan in the interim review coordination meeting of RAS / 7/035
	Atomic Energy Agency	Project to be held in the summer of 2021 and provide the latest information on the research
	(IAEA)/Regional	and application of isotopic techniques in Japan in collaboration with Japan's National Project
	Cooperative Agreement	Coordinator (NPC).
	(RCA) RAS/7/030 Project	2) Participate as an IAEA instructor/expert in the IAEA Home Base Expert Mission held online
	on "Assessing Deep	for the IAEA / RCA RAS / 7/035 Project, and provide online training, advice, and guidance to
	Groundwater Resources for	representatives from three countries such as Mongolia. Also promote efforts in research on the
	Sustainable Management	water cycle process using isotopes and other means in connection with the IAEA project.
	through Utilization of	
	Isotopic Techniques"	
(iii)-(2)-2. Synergy effects	Alumni networking	Continue updating the alumni list.
enhanced by alumni		Continue using Facebook to network ICHARM alumni and facilitate the interaction among
networking		them, as well as between ICHARM and the alumni.
		Maintain close contact with the alumni by sending newsletters and other means.
(iii)-(2)-3. Public relations	Maintain the ICHARM	Actively disseminate information on the latest activities on research, training and international
	website.	networking, as well as on other activities and announcements, by posting them on the website
		in a timely manner.
		Continue to improve the newsletter contents based on the viewers' feedback.
		Reply to comments and inquiries from the viewers quickly and appropriately.
	Publish the ICHARM	Publish the newsletter four times a year (January, April, July and October), and include various
	newsletter.	articles about ICHARM activities that are current and informative.
		Enrich and diversify the newsletter contents by promoting activities on research, training and
		international networking and collecting contributions from partner organizations and
		educational and training program graduates, including feedback from the subscribers.