戦−64 落石対策工の設計外力及び補修・補強に関する研究

研究予算:運営費交付金

研究機関:平21~平23

担当チーム:寒地構造チーム、寒地技術推進室

研究担当者:西 弘明、今野久志、山口 悟、澤松俊寿

横山博之、中村直久、高玉波夫、宮本修司

【要旨】

道路防災工の検討にあたっては、既設対策工の効果を検証し、適切な補修・補強によって、効率的・効果的に 安全性の向上を図ることが重要である。本研究では既存ストックを有効活用するため、現地状況をもとに落石荷 重の評価手法を提案するとともに、既設構造物等の劣化・損傷状況と補修・補強技術を体系的にとりまとめるこ とを目的としている。

既設構造物等の劣化・損傷の特性と補修・補強技術の体系化に関する研究では、全道の国道における落石防護 覆道の補修・補強状況を調査・分析した。その結果、従来の補修としては、漏水防止対策が主であったが、近年 は落石覆道の劣化・損傷対策として、塩害対策と本体の補修・補強事例が多くなっている実態が明らかとなった。

また、落石シミュレーションを用いた落石荷重の評価手法に関する研究では、過年度実施の実岩盤斜面を用いた落石実験について、3次元 DEM を用いて再現解析を実施するとともに、同手法を用いた落石シミュレーションにより落石挙動の検討を行った。

キーワード:道路防災工、落石覆道、補修、補強、落石シミュレーション、DEM

I. 既設構造物の劣化・損傷の特性と補修・補強技術の 体系化に関する研究

1. はじめに

本研究では、既設落石覆道の劣化・損傷状況と補修・ 補強技術を体系的にとりまとめること、及び落石荷重 の評価検討における参考資料とすることを目的として、 昨年度は現地における落石状況、覆道本体の劣化損傷 状況を把握するための調査を実施した。

今年度は国土交通省北海道開発局の協力を得て、 2009年度末(平成21年度)時点での全道の一般国道 における覆道の実態をとりまとめた。なお、調査とり まとめは、寒地土木研究所の各支所と連携し、実施し たものである。

2. 調査対象覆道

現況調書等より既設落石覆道に関する基礎資料を収 集するとともに、建設当時の一般図や構造図、さらに 既設落石防護構造物の補修・補強にかかわる業務成果、 工事図書なども収集し、分析・整理を行った。

その結果、北海道の国道における覆道は 96 箇所あ り、それらの形式別覆道数は図-1 に示す通りである。 図より、全体の 83%が RC 製であることがわかる。

鋼合成(サンドイッチ)覆道

図-1 全道の国道における形式別覆道数

鋼合成覆道は、当チームが開発した頂版に鋼コンク リート合成構造を採用した「サンドイッチ覆道」であ る。

3. 補修・補強状況の調査・分析結果

3.1 落石覆道の延伸状況

落石覆道は、建設当時に必要な延長が設置されてい るが、供用後の現場状況の変化に応じて適宜延伸など の対応が実施されてきている。

覆道の延伸箇所は11箇所で、全体(96箇所)の9%で あった。図-2には、年度毎の覆道延伸状況を示して いる。図より、全道では毎年のように何れかの覆道に おいて延伸の実施が行われてきたことがわかる。

図-3 落石覆道の補修・補強対策の実施状況

3.2 落石覆道の補修・補強状況

全道の落石覆道における補修・補強対策の実施状況 を図-3 に示す。図より、補修・補強対策が実施され ていた割合は、全体の 43%であった。しかし、調査 箇所の中には、建設当時から今日に至るまでの補修・ 補強の記録が不明な箇所もあることから、さらに多く の覆道において補修が実施されているものと推察され る。

3.3 覆道本体の補修・補強状況

落石覆道の補修・補強実績について、施工年度毎に 補修・補強内容別に分類したものを図-4に示す。

図より、2002 年度以前においては覆道の漏水防止 対策が主であったことがわかる。また、塩害対策につ いては過年度より実施がなされてきたが、近年では既 設コンクリートの劣化損傷部の除去、断面補修の後に 表面含浸材が使用されていることが特徴としてあげら れる。これは、北海道開発局の道路設計要領第3集橋 梁 第7章コンクリート部材の塩害対策に、対策工と して表面含浸材が示されていることによるものであ る。

また、近年、三層緩衝構造による補強事例が見受け られるが、これは道路防災点検などの実施により、建 設当時の設計入力以上の落石が想定される場合の対策 の一つとして実施されたものである。現状の覆道耐荷 力を評価し、耐荷力が不足する場合には、このような 緩衝材の変更とともに、対象岩体の除去や別線ルート 等も含めて総合的に勘案し、対策方法を決定すること になる。

次に落石覆道の補修・補強実績について、年度毎に 補修・補強部材別に分類したものを図-5に示す。

図より、落石覆道における補修・補強実績が近年増 加していることがわかる。また、過去には壁部、柱部 の補修が主体であったが、近年は落石荷重を直接受け る頂版部においても補修実績が増えている。柱部に関 しては、せん断耐力の向上を目的とした、アラミド繊 維補強の実施例が顕著となっている。

4. まとめ

既設落石覆道の補修・補強状況の調査・分析結果を 整理すると、以下のとおりである。

- 現地状況の変化等に伴う覆道延長の延伸が、毎年 道内のいずれかの落石覆道で行われている状況に ある。
- 2) 覆道の補修・補強対策としては、従来は漏水防止 対策が主であったが、近年は塩害対策や頂版も含 めた全体の補修・補強事例が顕著になっている。 また、三層緩衝構造の採用による耐荷力向上対策 の事例もみられる。

II. 落石荷重の評価手法の提案に関する研究

1. はじめに

落石は突発的に発生する自然現象のため、不規則性 が強く、事前にその発生状況を予測することは極めて 難しい。このような落石に対して落石軌跡や到達範囲、 落石エネルギー等を精度よく推定することができれば、 より適切な防災対策の立案が可能となる。

一方、落石の落下挙動を推定する手法の一つとして、 個別要素法(「distinct element method」以後、「DEM」と 記す。)がある。この手法は落石のような固体の運動を シミュレートするのに適した数値解析手法である。本 手法では斜面勾配や地形の変化を精度よく再現し、解 析定数を適切に設定することができれば、落石エネル ギー等を精度良く推定することができるものと考えら れる。

本研究では DEM における解析定数の設定のため、 過年度に実施した現地実験についての再現解析及び DEM による落石シミュレーションを実施した。

2. 現地実験(実斜面を用いた落石実験)

2.1 実験の概要

落石実験は**写真-2**に示すような斜面高さ200mを越 える急崖斜面で実施した。現地実験は2箇所で実施し、 落下試験体を斜面頂部から自由落下させることによ って行った。

落下試験体として用いた落石岩体の直径は 30cm 程度、ゴムボールの直径は30cm、20cmである。ゴム ボールはDEMの要素が球体であることから、球体の 落下軌跡をある程度の把握するため用いたものであ る。写真-1には現地試験で用いた落石岩体試験体を示 す。

2.2 実験結果の概要

写真-2には、現地実験を実施した投石位置 A(80m) と投石位置 B (35m)を示す。

投石位置Aからの落下軌跡は斜面が沢状になってい たことから沢の内側に誘導されるように落下し、その 落下時間は10秒程度であった。また、投石位置Bか らの落下軌跡は斜面が平滑に近いことから局所的な起 伏に影響され、落下当初から落下軌跡に違いがみられ た。なお、落下時間は4秒程度であった。これらのこ とより、落下軌跡は斜面地形や斜面性状から受ける影 響が大きいことがわかった。

写真-1 現地実験の落石岩体試験体

写真-2 現地落石実験

3. 現地実験の再現解析

3.1 再現解析の概要

既往の室内実験により得られた跳ね返り係数につい て、その落石シミュレーションへの適用性および解析 精度を検証することを目的として、現地実験の再現解 析を実施した。落石実験を行った対象斜面は、事前に 航空レーザ測量により詳細な斜面データを得ているこ とから、このデータをもとに斜面をモデル化すること とした。

3.2 現地実験の再現解析に用いる定数設定

表-1には、再現解析に設定したケースおよび定数 を示す。跳ね返り係数は室内実験結果の採用値を設定 した。再現解析での斜面の跳ね返り係数は現地斜面の 地質調査の結果、安山岩と火砕岩で構成されていたこ とから、現地斜面が安山岩の箇所には安山岩の試験結 果を、現地斜面が火砕岩の箇所では現地にて火砕岩が 採取できなかったことからモルタル盤の試験結果を用 いた。跳ね返り係数は岩球体では平均値を採用し、岩 体では岩球体との差異を明瞭にするために最低値を採 用した。崖錐部は過年度の試験結果の0.01を採用した。 また、落石岩体が斜面との衝突時に受ける抵抗を再現 するため、阪口¹⁾らの提案する転がり摩擦抵抗を設定 することとした。本解析における粒子は計算量削減の ため球体であることから、粒子が非常に回転しやすい。

設 定 ケース	落石岩体	斜面	跳ね返り係数	落体 直径 (m)	バネ係数 法線方向 (kN/m)	バネ係数 接線方向 (kN/m)	転がり摩擦 係数
岩球体 (六角形)	安山岩	安山岩	0.60(安山岩)				
		火砕岩	0.46(モルタル)	0.3			0.58r
		崖錐部	0.01		1.2.1010	3.0×10 ⁸	
岩球体		安山岩	0.60(安山岩)		1.2×10		0.41r
		火砕岩	0.46(モルタル)				
(八月形)		崖錐部	0.01				
ш 4	÷	安山岩	0.24 (安山岩)			0.58	
岩 体 (六角形)		火砕岩	0.15(モルタル)				0.58r
	安	崖錐部	0.01	0.2	1 2. 1010		
岩 体 (八角形)	出岩	安山岩	0.24 (安山岩)	0.5	1.2×10	5.0×10	
		火砕岩	0.15 (モルタル)				0.41r
		崖錐部	0.01				

表-1 再現解析に用いた解析ケース

表-2 地質調査結果および岩石試験結果

岩		相	火砕岩	安山岩
湿潤密度		w (g / cm ³)	1.99 0	_
自然密度		$N(g/cm^3)$	1.948	2.594
		P波伝播速度 (km/sec)	1.76	3.42
超音波伝播速度	自然	S 波伝播速度 (km/sec)	0.97	1.69
		動弾性係数(N/mm ²)	4.69×10^{6}	2.0×10^{7}
一軸圧縮強さ	湿潤	一軸圧縮強さ	4887	—
(kN/m^2)	自然	一軸圧縮強さ	3938	68818
口正改应	弓	張強度 (kN/m²)	218	5909
归版独良		密度 (g/cm ³)	1.89	2.608

しかしながら、実際の岩体表面には凹凸があり容易に は回転しないことから、このような回転抵抗の影響を 再現するため転がり摩擦係数を設定し回転の抑制を行 った。落石岩体については、その形状を簡素化し、六 角形断面と八角形断面の2ケースでモデル化し、六角 形断面の転がり摩擦係数を 0.58r、八角形断面を 0.41r とした。要素間のバネ係数については岩片の超音波伝 播速度から導き、法線方向 $k = 1.2 \times 10^{10}$ kN/m、接線方 向 $k = 3.0 \times 10^8$ kN/m とした。

表-2には、現地実験で用いた岩石試験結果を示す。 なお、粘性減衰係数は跳ね返り係数から導いた²⁾。

3.3 再現解析結果

a) 投石位置Aの現地実験の再現解析結果

図-1には、投石位置 A からの落下軌跡(右)と現地 実験の再現解析結果(左)を示す。図より再現解析での 落石軌跡は岩球体、岩体の跳ね返り係数にかかわらず 類似の傾向を示していることが分かる。

図-2 には、再現解析の鉛直変位と落下時間の関係 を示す。図より、解析結果の落下時間は岩体の跳ね返 り係数を用いた場合がより長く、10 秒程度である。

図-2 投石位置 Aのシミュレーション結果

これは現地実験と同程度である。これより投石位置 Aでは岩体の跳ね返り係数を用いた場合に、より高い 再現性が得られたものと推察される。

b) 投石位置B の再現解析結果

図-3には、図-1と同様に投石位置 B からの落下軌 跡と再現解析結果を示す。岩球体と岩体は同様な軌跡 で落下し、その後は方々へ落下していった。

図-4には、再現解析の鉛直変位と落下時間の関係を 示す。図より、解析結果の落下時間は岩球体の跳ね返 り係数を用いた場合が、4 秒程度である。これは現地 実験と同程度である。投石位置 B においては岩球体の 跳ね返り係数を用いた場合に、より高い再現性を有し ているものと判断される。これは投石位置 A の場合と 逆の結果となっている。

以上、現地投石実験についての再現解析から、幅は あるが概略の落石コースの把握が可能であることがわ かったが、さらに、斜面地形や性状ごとの跳ね返り係 数の設定などの種々の条件での検討が必要と考えられ る。

図-4 投石位置 Bのシミュレーション結果

4. DEM 落石シミュレーション

4.1 解析の概要及びモデル化

対象斜面は、前述のように高さ 200m を越える急崖 斜面であり、3m の落石防護工およびその背面に 5~ 20m の落石ポケット部を有する。3 次元 DEM による 落石シミュレーションは落石の経路、落石防護工に対 する落石岩体の衝突の有無、および衝突した場合の落 石エネルギーを求めること目的として行った。なお、 落石岩体は現地調査から直方体形状でモデル化した。

4.2 解析ケース

表-1 に本解析にて実施した解析ケースの一覧を示 す。跳ね返り係数は屋内実験結果から得られた岩球体 と岩体の2つの値を用いた。落石岩体は直方体として 斜面との衝突時に受ける抵抗を再現するため、転がり 摩擦係数¹⁾1.0を設定した。また、要素の直径を1.0m、 重量を104 kN とし、バネ係数は岩片の超音波伝播速度 から導き、法線方向 8.0×10¹⁰ N/m、接線方向 2.0×10⁹ N/m とした。なお、粘性減衰係数は反発係数から導い た²⁾。

表−3 解析ケース一覧								
落 落石岩体 体	落	落 斜面 本	跳ね返 り係数	落体直径	落体重量	バネ係数	転がり	
	体					法線方向	接線方向	摩擦係数
	安	安山岩	0.60					
岩球体	山	火砕岩	0.46	1.0m	104kN	8.0×10 ¹⁰	2.0×109	1.0
ł	岩	崖錐部	0.01					
	安	安山岩	0.24					
岩 体	山	火砕岩	0.15	1.0m	104 kN	8.0×10 ¹⁰	2.0×109	1.0
÷	岩	崖錐部	0.01					

図-5 岩球体の跳ね返り係数を用いた場合の落石軌跡

(a) 岩体跳ね返り係数(b) 岩球体跳ね返り係数図-6 落石の停止位置

4.3 落石到達範囲

図-5には、岩球体の跳ね返り係数を用いた場合の落 下軌跡を示している。

図-6には、シミュレーション結果の落石の停止位置 を示している。(a)図より、岩体の跳ね返り係数を用い た場合、落石岩体は斜面を落下し落石防護溝で停止し ている。一方、(b)図より、岩球体の跳ね返り係数を用 いた場合には、落石岩体の一部は落石防護工を通過す るものが生じていることがわかる。

落石岩体	斜面	跳ね返り係数	落体直径	落体重量	落下高さ	鉛直速度	落石エネ ルギー
	安山岩	0.60				15.0	
岩球体	火砕岩	0.46	1.0m	104kN	176m	15.8	1300kJ
	崖錐部	0.01				m/s	
	安山岩	0.24				12.2	
岩 体	火砕岩	0.15	1.0m	104kN	175m	12.2 m/s	774kJ
	崖錐部	0.01					

表-4 落石防護エへの落石エネルギー(岩球体)

4.4 落石エネルギーの算定

表-4には、落石防護工の位置を落石岩体が通過した 時点での鉛直速度、落石エネルギーを示している。図 -6(b)に示すように落石防護工の位置を通過した落石 岩体は2岩体である。なお、それぞれの落石岩体の鉛 直速度は15.8 m/s, 12.2 m/s、 落石最大エネルギーは 1,300 kJ, 774 kJ であった。

5. まとめ

本研究では、DEM を用いた落石シミュレーション 手法に関して、実岩盤斜面を用いた落石実験の再現解 析を行うとともに、検討した手法を用いた落石シミュ レーションを行った。結果をまとめると以下のように なる。

- 1) 現地投石実験の再現解析から、幅はあるが概略の 落石コースの把握が可能であることがわかった。
- 2)対象斜面の落石シミュレーション結果から、落石 の挙動や落石エネルギー、到達範囲が推定可能であ ることがわかった。

本研究で検討を行っている落石シミュレーションに より、落石防護工の設置箇所の選定や必要な性能等を 概略把握することが可能となれば、防災対策工の検討 に寄与することができるものと考えられる。

今後、さらに斜面地形や性状ごとの跳ね返り係数の 設定方法など、種々の条件での検討を実施する。

参考文献

- 阪口秀、岩下和義、中瀬仁、本田中、西野隆之:土の構 造とメカニックス-ミクロからマクロへ4、数値粒子法に よる土の微視的挙動の追跡(その4)、社団法人地盤工学 会、pp.53-58、2002
- 2) 大町達夫、荒井靖博:個別要素法で用いる要素定数の決め 方について、構造工学論文集Vol.32A、1986