1-13 活断層周辺の地下構造探査手法および地盤モデル作成手法に関する調査(1)

研究予算:運営費交付金(一般勘定) 研究期間:平15~平20

担当チーム:地質チーム

研究担当者:佐々木 靖人、倉橋 稔幸

【要旨】

本課題では、活断層周辺のハザードマップ作成に必要な地下地質構造やS波速度構造をモデル化することを目 的として、地形要素判読、S波起震機を利用した反射法地震探査、地盤力学情報データベースの構築を行ったも のである。その結果、活断層地形要素判読による確実度判定の目安を示し、調査・解析の標準的仕様を「活断層 地形要素判読マニュアル」としてまとめたほか、S波起震機を震源とした反射法地震探査の解析から活断層周辺 における深度約 500m 程度までの二次元の地下地質構造と、S波速度構造モデルを明らかにした。 キーワード:活断層、地形要素判読、反射法地震探査、S波速度構造、地盤力学情報データベース

1. はじめに

兵庫県南部地震や集集地震以降、土木構造物の設計において L2 地震動と断層変位に対処することが 懸案となっている。現状では、L2 地震動の耐震性照 査の指針(案)等¹⁾²⁾ではその想定地震の地震動の大 きさを予測するにあたり起震断層の位置・長さ・傾 斜・幅等を仮定しなければならない。しかし、その 詳細は文献調査等に頼るのが現状であり、実際には 照査に不足する情報が少なくない。また、地盤の揺 れの大きさを左右する地盤物性情報は、調査機関ご とに所有され散逸の危機にある。これらの不足した 情報の補完のためには、活断層の位置や地下構造を 適確に調査する技術の開発、既存の地盤情報のデー タベース構築、理論的なハザードマップ作成技術の 確立が求められている。

そこで本課題は、活断層周辺のS波速度構造をモ デル化することを目的として、地形要素判読、S波 起震機を利用した地下構造調査・解析、地盤力学情 報データベースの構築を行ったものである。

2. 研究方法

2.1 地形要素判読のマニュアル作成

活断層が動くと、地表に断層の動いた痕跡やずれ を残すので、断層の活動が度重なると、ずれが累積 し、空中写真や衛星写真で地形的な線状模様として 認識できるようになる。しかし、活断層の活動性が 小さいと線状模様は不明瞭となる。そこで活動性の 低い活断層を的確に抽出することを目的として、地 形要素判読マニュアルを作成した。本課題では 36 本の活断層の線状模様を地形要素判読し、活断層の 確実度と線状模様を構成する地形要素との相関を解 析した⁵⁾。地形要素を「①崖地形等の地形要素」、「② 屈曲等の地形要素」、「③凹凸等の地形要素」、「④変 位不明瞭な地形要素」の四つの地形要素に分類し、 特に地形面勾配の異常、地形面・地形線あるいは人 工構造物の切断、変形の系統性、変位の累積性など の四点に注目した³⁴⁾。図-1に活断層の主な地形要素 を示す。これらの地形要素の出現頻度を確実度区分 と照らし合わせ、活断層の確実度区分の目安を示し、 判読から確実度判定までの調査・解析の標準的仕様 を「活断層地形要素判読マニュアル」⁴にまとめた。

図-1 活断層の主な地形要素(岡田(1979)⁶に加筆)
 ①崖地形等の地形要素:崖、三角末端面
 ②屈曲等の地形要素:尾根の屈曲、谷の屈曲
 ③凹凸等の地形要素:凹地

2.2 S 波起震機を利用した地下構造モデル構築

活断層周辺の地下地質構造とS波速度構造を明ら かにすることを目的として、これまでに国府津一松 田断層、深谷断層、小平尾断層、旭山撓曲の四断層 を対象にS波起震機を震源とした反射法地震探査 (図-1,図-2、表-1、表-2)を実施してきた⁶⁷⁷⁸⁹⁹¹⁰。 これらの探査で得た波形記録を CMP 重合法により解 析し地下地質構造を求めた。また、波形の初動を読 み取り回折トモグラフィ解析することで、地下の S 波速度構造を求めた。解析フロー図を図-4示す。

図-2 S波起震機を用いた反射法地震探査の概念図

項目	内容
起震間隔	10m
地震計設置間隔:	10m
チャンネル数	最大 144
サンプル間隔	2ms
レコード長	8s
周波数	10~40Hz

表-1 反射法地震探査の仕様一覧

表-2 S 波起震機の諸元

車体仕様		起震機仕様			
車体長	9.9m	反動体質量	2.7t		
車体幅	2.6m	可動部質量	5.4t		
車高	3.2m	最大加震力	133kN		
車体質量	26.7t	ピストン断面	64cm ²		
エンジン	ディーゼル	実効ストローク	8インチ		
排気量	9.1L	設置プレート 6	$10 \times 750 \times$		
最高出力	345HP		40mm		
		スイープ周波数	5-100Hz		

図-3 S 波起震機

図-4 解析フロー図

2.3 地盤情報を利用した地下構造モデルの検証と 高度化

反射法地震探査記録の回折トモグラフィー解析で 得たS波速度構造のモデルを、既存のボーリング柱 状図と対比させ、地盤モデルの妥当性を検証した。

まず、地盤力学情報データベースを設計し構築し た。地盤力学情報データベースは「地質・土質調査 成果電子納品要領(案)平成16年6月版|¹¹⁾に収め られた XML 形式のボーリング交換用データと土質 試験結果一覧を検索・閲覧できるデータベースであ る。さらに電子国土を利用することでボーリング位 置を国土基盤地図情報を背景とし表示・検索できる システムを設計し構築した(図-5)。国土交通省の開 発局および地方整備局と連携し、このデータベース にボーリング柱状図を約7万5千件と、土質試験デ ータ約9万件を入力した。なお、構築したデータベ ースを国土交通省の地理空間情報基本計画や CALS/EC アクションプログラム 2005 への取り組み の一環として国土地盤情報検索サイト"KuniJiban"¹²⁾ から平成20年3月27日からインターネットで試験 提供した 13)14)。

次にモデル検証のために活断層周辺の既存ボーリ ングデータを「国土地盤情報検索サイト」¹²⁾および 「かながわ地質情報マップ」¹⁵⁾から合計 224 本収集 した。このうち反射法地震探査測線から 300m 以内の 範囲に分布するボーリング柱状図 18 本から柱状図 対比図を作成した。その柱状図対比図を反射法地震 探査の解析結果やS波速度構造解析結果と対比し、 断層周辺の地盤モデルを検証した。

図-5 国土地盤情報検索サイト¹²⁾の検索画面

3. 研究結果

3.1 地形要素判読

これまでに36本の線状模様を地形要素判読し、そこから確実度と線状模様を構成する地形要素との相関を解析し、表-3に示すように活断層の確実度区分における地形要素の種類と目安を示した。さらに判読から確実度判定までの一連の調査・解析の手順を

「活断層地形要素判読マニュアル」⁴⁾としてとりま とめた(図-6)。

8. まとめと今後の課題

図-6 活断層地形要素判読マニュアル4の目次

表-3 活断層の確実度区分の目安

		縦ずれ断層				模ずれ断層			
確実度	地形要素 分類	: ①崖地影等の地形要素			③変位不明瞭な地形要素	②屈曲等の地形要素		③変位不明瞭な地形要素	
	地形場	明瞭度	連続性・系統性および周辺地形との位置関係	全地形要素数 に占める構成 比	鞍部	連続性・系統性および周辺地形との位置関係	地形要素密度	風隙・截頭谷 の有無	全地形要素数に 占める構成比
山地 L, の境		 ・線状模様を境として、両側の尾根形状(尾根の幅や尾根線の向きなど)が異なる。 ・尾根上に低崖がある 	₹	 ・鞍部のくびれが著しい。 ・鞍部は、主尾根の延長方向とさ 	5				
	шле	山地・あまり開祈されす、明瞭である。	 ・崖は蜜に連続して配列し、延長部には鞍部等の地形が頻出する。 ・低崖は、古い地形面ほど比高が大きく、累積 性がある。 	────────────────────────────────────	交する。 ・接頭直線谷がある。	・複数の尾根・谷が系統的に屈曲する。 ・延長の段丘面上に進が認められる。 ・段丘面上に逆向き崖が認められる。	2個/km以上 (全要素密度5 個/km以上)	有	-
	山地と低地 の境界	・あまり開析されず、明瞭である。	・崖は直線的またはスムーズな弧状に配列す る。 河川と直交ないし斜交する。 ・地形面上に低崖あるいは逆向き崖がある。		・(一般に鞍部は少ないが、)一 部、平地側へ張り出す丘陵状の 尾根に鞍部がある。				
L ₂	全般	比較的、崖の開析が進み、やや不 明瞭である。	・崖は蜜に連続して配列する場合もあるが、間 隔のあく場合もある。 ・崖は概ね直線的(またはスムーズな弧状)に 配列するが、崖線はやや凹凸する。 ・河川と直交ないし斜交して延長する。	5~7割程度	・鞍部が頻出する。 ・鞍部の向きは、線状模様の延 長方向にやや斜交する。 ・接頭直線谷があるが、一直線を なさず、ずれる場合がある。	1~2個程度の尾根や谷が屈曲する。	2~1個/km	有	-
L3	全般	・開折され、不明瞭である。	・ 住や鞍部等の間隔が線に配列する。 ・ 進み、あるいは鞍筋のみの同種地形が配 列し、延長上の尾根には地形要素が判該され ない場合もある。 ・ 進化やや凹凸して配列する。 ・ ョ川レギャドに通し、河川の蛇行方向に従 駅に向きを変えている。 ・ 進の比高がばらつく。	2~5割程度	接頭直線谷が認められない場合 が多い。	1~2個程度の尾根や谷が屈曲する。	1個/km以下	無	3割以上
非活断層	全般	・一部に鮮明な崖もあるが、隣接 する崖が着しく開新されるなど、開 桁程度が一様ではなく、不明瞭で ある。	・数部のみなどが配列するなど、同種の地形 が配列し、延長上の尾根には地形要素が判読 されない場合もある。 ・1産様に凹凸し、可川の乾行に従順に配列す ・ ・周囲の山地に続け模様を増とした一様な高 度不進続が寝っできない。 ・増の比高がはでっく、・ ・、川の両単で、比高や使者程度のほぼ等し い道が増添たれることがある。 ・ 進は可川と平行に配列し、差線は可川の蛇 行方向にで観に湾曲する。	2割以下	接頭直線谷がほとんど認められ ない。	屈曲等の地形要素がほとんど認められない。	1個/km以下	無	5割以上

3.2 活断層周辺の地下地質構造とS波速度構造

国府津-松田断層を対象とした反射法地震探査の 解析結果の例を図-7(a)に示す。この解析断面図では 標高 0~-300m にかけて明瞭な反射波が認められ、 その反射波は CMP2070 付近でキンク状に反射波が 折れ曲がり、CMP2030 かけて下方へ傾動している。

CMP2070 では反射波の鉛直変位は約 50m、 CMP2030の深度-20m 付近でも反射波に比高 10m 程 度の段差が認められるなど、この解析結果から深度 -500m 程度まで活断層の断層位置や鉛直変位量を読 み取ることができた。活断層の断層位置や累積変位 量を明らかにすることができた。従来のS波探査手 法に比べて約5倍程度の深さまで探査できるように なった。

一方、回折トモグラフィー解析による S 波速度構 造断面図を図-7(b)に示す。S 波速度(Vs)は-100m 以浅 で 0.3~1.0km/s を示す。CMP2000~2080 の区間と、 CMP2180~2270 の区間で速度が 0.3~0.5km/s まで低 くなっており、特に断層の西側で顕著に速度が低下 していることが分かる。

今後は、このような探査事例をもとに、S 波起震

機を利用した地下構造モデルの構築手順をとりまと める予定である。

3.3 地盤情報による活断層周辺地下構造モデルの 検証と高度化

図-7(c)に国土地盤情報検索サイト」¹¹⁾および「か ながわ地質情報マップ」¹²⁾から収集した18本のボー リング柱状図から作成した地質断面図を示す。柱状 図に記載された層相およびN値をもとに地層の区分 をおこなった。その結果、上位から崖錐層、砂礫層、 砂層、良く締まった砂層、良く締まった泥層に区分 できた。これらの地層の分布とS波速度構造モデル とを対比すると、CMP2030~2070区間における速度 低下の原因は、沖積層や段丘堆積物が厚く堆積して いることや基盤岩が軟化していることにある。これ はCMP2030とCMP2070付近における国府津一松田 断層帯の断層運動に伴う沈降によるものであると推 定される。これら地盤情報を用いることで地下構造 モデルの検証や高度化が可能であることが分かった。

ただし、今回、地質解釈しモデルを検証できたの は、ボーリング柱状図が記載されている深度 20m 程 度までの範囲である。反射法地震探査の解析断面に 見られる深度 100m までの S 波速度構造を地質解釈 するには十分ではない。今後、より深部のボーリン グデータの追加が必要である。また、二次元におけ る速度構造モデルを活断層周辺の面的に展開するに は足柄平野や大磯丘陵にける他のボーリング情報や 地表路頭と併せて地質解釈することが必要である。

4. まとめ

本課題では、活断層周辺のハザードマップ作成に 必要な地下地質構造や地盤モデルについて検討を行 った。その結果、以下のことがわかった。

- 活断層地形要素判読による確実度判定の目安を 示し、調査・解析の標準的仕様を「活断層地形 要素判読マニュアル」としてまとめた。
- 2) S 波起震機を震源とした反射法地震探査の解析 から活断層周辺における深度約 500m 程度まで の地下地質構造を明らかにし、従来のS波探査 手法の5倍程度の深さまで探査できることを明 らかにした。
- 3) 活断層周辺における地下のS波速度構造モデル を明らかにした。また、地盤情報のデータベー ス等を活用することにより、地下速度構造モデ ルの検証や高度化が可能であることを示した。

地震ハザードマップ作成のためには、周辺ボーリ ングデータとの対比等により二次元のS波速度構造 モデルを面的に展開する必要がある。今後は、これ らの成果を、S波起震機による反射法地震探査・解 析や地盤情報を用いた地下構造モデル化手法として とりまとめる予定である。

参考文献

- 片岡正次郎、日下部毅明、村越 潤、田村敬一:想定 地震に基づくレベル2地震動の設定手法に関する研 究、国土技術政策総合研究所報告、No.15、32p.、2003 年10月.
- 永山功ほか:大規模地震に対するダムの耐震性能照査 に関する資料、土木研究所資料、第 3965 号、192p.、 2005 年 3 月.

- 3) 倉橋稔幸、品川俊介、阿南修司、脇坂安彦:空中写真 による第四紀断層の客観的判読の試み、土木技術資料、 第45巻、第6号、pp.52-59、2003年6月.
- 佐々木靖人ほか:活断層の位置および規模の定量的認 定法に関する研究(4) 活断層地形要素判読マニュア ル、土木研究所 共同研究報告書、第 338 号、48p.、 2006 年 3 月.
- 5) 佐々木靖人ほか:活断層の位置および規模の定量的認 定法に関する研究(3) 確実度の判定と判読能力の分 析、土木土木研究所 共同研究報告書、第337号、181p.、 2006年3月.
- 6) 岡田篤正:愛知県の地質・地盤(その4)(活断層)、 愛知県防災会議地震部会、122p.、1979年.
- Kurahashi, T and Inazaki, T.: "S-wave seismic reflection survey conducted at the southern part of epicentral area of the 2003 Northern Miyagi earthquake", Proceedings of the 7th SEGJ International Symposium, pp.463-466, 2004.11.
- 倉橋稔幸、稲崎富士:S波起震機を用いた活断層調査、 土木技術資料、第48巻、第5号、pp.52-57、2006年5 月.
- Kurahashi, T. and Inazaki, T.: Seismic reflection survey for an active fault using shear-wave vibrator, Proceedings of Symposium on the Application of Geophysics to Environmental and Engineering Problems, EEGS, CD-ROM, 2007.3.
- 10) 倉橋稔幸: 55. 活断層を対象としたS波起震機による 反射法地震探査、平成19年度研究発表会講演論文集、 日本応用地質学会、 pp.109-110、2007年10月.
- 国土交通省大臣官房技術調査課監修:地質・土質調査 成果電子納品要領(案)平成16年6月版、財団法人 日本建設情報総合センター、2004年9月.
- 国土交通省・独立行政法人土木研究所・独立行政法人 港湾空港技術研究所:国土地盤情報検索サイト、 http://www.kunijiban.pwri.go.jp/、2008 年 3 月.
- 13) 倉橋稔幸、佐々木靖人、稲崎富士:国土交通省における地盤情報提供の取り組みについて、第3回シンポジウム「統合化地下構造データベースの構築」研究成果の中間報告予稿集、防災科学技術研究所、pp.33-36、2009年3月.
- 14) 倉橋稔幸:最近の地盤情報の整備と活用(1) -国土地 盤情報検索サイト"KuniJiban"による地盤情報の提供 -、応用地質、第50巻、第1号、pp.168-169、2009 年4月.
- 15) 財団法人神奈川県都市整備技術センター:かながわ地 質情報 MAP、 http://www.toshiseibi-boring.jp/、2007.

【英文要旨】

A STUDY ON EARTHQUAKE HAZARD MAPPING AND A SHEAR WAVE VIBRATORY EXPLORATION TECHNIQUE FOR AN ACTIVE FAULT (1)

Abstract : This paper describes results of geological interpretation and shear wave velocity structure for earthquake motion hazard mapping of active faults. We conducted air-photo interpretation of geomorphic elements, shear wave vibratory exploration, seismic data processing, and geological interpretation using borehole databases. The interpretation and the processing revealed geological structures and shear wave velocity structure up to 500 meters of the depth around active faults.

Key words : active fault, air-photo interpretation of geomorphic elements, shear wave vibratory exploration, shear wave velocity structure, geotechnical property database