土石流・斜面崩壊発生予測における斜面変動に関する研究

研究予算:運営費交付金(一般勘定)

研究期間:平18~平21

担当チーム:火山・土石流チーム

研究担当者:田村圭司、内田太郎

【要旨】

本研究では、斜面崩壊機構を明らかにし、斜面崩壊の予測精度を向上させることを目的とし、降雨時及び無降 雨時の斜面変形の実態の把握を行った。その上で、斜面の変動及び崩壊を検知する新たなセンサー(斜面崩壊検 知センサー)の開発を行った。斜面崩壊検知センサーの開発にあたっては、安価でメンテナンスが容易であるこ とを重視し開発を行った。さらに、斜面崩壊検知センサーを実際の斜面で、耐久性や機能を確認した上で、広島 西部山系で試験的に運用を開始した。広島西部山系では、崩壊検知センサーを設置する場所を決めるために、表 層崩壊の危険度評価を行った。以上の検討に基づき、表層崩壊危険度評価手法と斜面崩壊検知センサーを組み合 わせた、警戒避難体制構築のための新たな斜面監視手法を提案した。

キーワード:斜面変形、斜面崩壊検知センサー、警戒避難、斜面崩壊、崩壊発生予測

1. はじめに

斜面崩壊による被害は依然として頻発し、しばしば 人命等に深刻な影響を及ぼす。これに対して、現状で は、斜面崩壊・土石流のおそれの場所の多くが、対策 施設が未整備な状態にある。そのため、斜面崩壊など、 土砂災害を防ぐためには、施設整備を急ぐとともに、 適切な警戒避難体制を整備するなど、ソフト対策の充 実が必要不可決である。そのため、土砂災害の発生時 刻の予測精度を挙げるとともに、住民等に警戒避難の 必要性を分かりやすく伝えることが重要となる。そこ で、本研究では、はじめに、山地斜面の斜面崩壊・変動 の実態を把握するために、観測データ、実験データの 整理・解析を行った。その上で、斜面の変動及び崩壊 を検知する新たなセンサー(斜面崩壊検知センサー) の開発を行った。さらに、新たなセンサーを実際の山 地斜面に設置し、実用性の検討を行った。

2. 斜面変形の実態の把握

2.1 背景

豪雨時に地下水位の上昇、土質強度の低下にともない、斜面の変形が生じることが報告されてきた。このような斜面の変形現象は、斜面崩壊現象と密接に関連していると考えられ、斜面変形現象を解明することは、斜面崩壊の発生予測精度の向上に繋がると考えられる。

平成16年度から18年まで、国土交通省国土技術研 究会の指定課題として「山地流域における土砂生産予 測手法の研究」が実施され、山地斜面で詳細な斜面変 形観測データが蓄積されてきた。一方、室内模型実験 では、詳細な地表面等の変位計測が行われ、斜面変位 を再現するモデルの構築が進められてきている。しか しながら、これまで現地観測結果や室内実験結果を統 一的に整理した事例はこれまでほとんどなく、斜面変 形の実態およびその支配要因について十分検討されて いるとは言い難いのが現状である。

そこで、本章では近年蓄積されてきた斜面変形の現 地観測結果と既往の室内崩壊実験に関する文献を再解 析することにより、斜面変形の実態把握および表層崩 壊発生に至るまでの斜面変位に対する要因の検討を試 みた。

2.2 方法

本研究では、国土交通省の太田川河川事務所(広島 西部山系・荒谷・宮内・四季が丘)、日光砂防事務所(大 谷川流域・下の沢)、松本砂防事務所(姫川流域・浦川) の現地観測データを用いた。観測斜面の諸元を表-1に まとめた。ここでは、地表面または地中に設置された 傾斜計の観測データを用いた。

さらに、過去に土木研究所、防災科学技術研究所、 鉄道技術研究所、鳥取大学で実施された室内模型実験 に関する文献を収集し、諸条件(試料、雨量強度など) によって、斜面が変形し崩壊に至るまでの過程や時間 がどの程度変化するかを把握した。斜面変形のデータ は地表変位計によって計測されたものであり、複数の 計測データがある場合は最も変位が大きい箇所(主に 移動土塊の上端部付近)の地表面移動量のデータを整

表-1 観測斜面の諸元

観測地域	観測場所	地質	勾配	土層厚	標高	備考				
下の沢	崩壊地の上部斜面	崖錐堆積物	約 15°	?	約 2,230m	冬季積雪あり				
荒谷	崩壊しそうな斜面	花崗岩(マサ)	約 48°	約 2m	約 225m					
宮内	崩壊しそうな斜面	花崗岩(マサ)	約 37°	約 1m	約 370m					
四季が丘	崩壊しそうな斜面	花崗岩(マサ)	約 28°	約 2m	約 230m					
浦川	崩壊地の上部斜面	稗田山大崩壊堆積物	約 30°	?	約 980m	冬季積雪あり				

理解析した。

2.3 結果

(1) 現地観測斜面の長期的な斜面変形

観測期間(約1年~2年半)全ての傾斜計データに

ついて、図-1に示した。長期的に見ると、下の沢(深度 30、90cm)及び荒谷(深度 67cm)ではほぼ単調に 谷側へ傾斜が増加していく傾向が見られ、最大で年間 約 20 分程度の速度で傾斜が増加した。荒谷ではほぼ等 速に傾斜が増加していった。これに対し、下の沢では 3~4 月にかけて、傾斜が他の時期に比べて大きく増加 する傾向が見られた。

一方、荒谷と同じ地質(花崗岩)からなる宮内や四 季が丘では、浅いところでは傾斜の継続的な増加が認 められるものの、土層全体としてほとんど累積変位が 認められない。深部と浅部の傾斜の増分が逆向きでほ ぼ同程度であった。また、浦川もほとんど傾斜変化が 観測されていない。

観測斜面鉛直方向の傾斜変動の模式図を図-2 に示 す。この図は傾斜計最深部に対する地表面の相対的な 移動量を算出したものである。下の沢では、地表面か ら 90cm 付近まで傾斜の増加はほぼ同様であり、土層 全体が一体となって傾いていると推定される。これに 対し、荒谷では深い位置で傾斜が大きい傾向である。 下の沢、荒谷における地表面の年間移動量は 1.6~ 3.4mm/yr であり、例えば佐々木ほか(1994)で示され ている年間 0.7~2.1mm の地表面速度と調和的である。 宮内や四季が丘では、各深度で傾斜変動が認められる ものの、地表面付近の累積移動量はわずかである。

図-2 傾斜変動の模式図(観測開始を基準)

※ 総降水量(又は総融雪量)が50mm以上の降雨(又は融雪)による地表面移動量
 ※ 地表面移動量は、傾斜計最深部に対する地表面の相対的な移

図-3 斜面変形比較一覧

(2) 現地観測斜面の降雨時の変形および長期的な変形 との比較

降雨時の短期的な斜面変形を詳しく検討するため に、総雨量 50mm 以上の一連の降雨(前後に6時間以 上の無降雨期間があるひとまとまりの降雨)に対する 傾斜計から算出される地表面移動量を図-3 に示した。

図-1 で示したように、傾斜の長期的変動に対し1 降雨による変動は小さく、明瞭ではないが、図-3 に 示すように、長期的な傾斜変化が大きかった下の沢、 荒谷は降雨時の地表面移動量も相対的に大きかったの に対し、四季が丘、浦川は長期的な変動同様、それぞ れの地表面移動量(浦川は傾斜変化)は小さかった。 一方、長期的な変動のほとんど見られなかった宮内も、 下の沢、荒谷とほぼ同程度の降雨時の地表面移動量が 見られた。

斜面変形が仮に無降雨期(長期)の変形と降雨時の 変形の2タイプの変形により進んでいくものと推定す ると、各観測地の斜面変形は図-4に示すとおり分類 できる。無降雨期(長期)における累積変形や降雨に 対する変形の大小と斜面崩壊発生との関係は現段階で 不明であり、今後の検討課題の一つであるが、斜面の 安定性を考察する上で一つの指標となりうるものと考 えられる。

(3) 室内模型実験による斜面変形の実態

斜面が変形し崩壊に至るまでの要因や時間変化を 把握するために、崩壊10分前の地表面移動量を指標と した。図-5に崩壊時刻を0とし、各実験の地表面移

図-5 地表面移動量/10 分前地表面移動量と崩壊まで の時間の関係

図-6 崩壊 10 分前地表面移動量と降雨強度の関係

動量を 10 分前地表面移動量で割った場合の時系列変 化を示す。崩壊に近づくにつれ、10 分前地表面移動量 に近づいていくのが読み取れるが、その割合は実験に よる違いが大きかった(60 分前で 10 分前地表面移動 量のほぼ 0%~75%)。また、砂質土と粘性土(ローム) を比較した場合、砂質土を用いた実験において、崩壊 直前に急激に変動量が増加する傾向にあった。 次に、崩壊 10 分前の地表面移動量と各種の条件に ついて相関性を検討した。顕著な相関関係が認められ たのは降雨強度であった(図 - 6)。図に示したように、 降雨強度が大きいほど崩壊 10 分前の地表面移動量が 小さく、崩壊直前に急激に変位が生じることが分かる。 一方、土層厚や傾斜角、斜面長の条件と崩壊 10 分前の 地表面移動量との間には、はっきりした相関関係は確 認できなかった。

2. 4 結論

本研究により、現地観測データ及び室内模型実験デー タに基づき、斜面変形の実態把握を試みた。この結果、 次のことが明らかになった。

- 累積的な斜面の変位が生じる斜面とそうでない斜 面が存在する。
- ② 累積的な斜面の変位が生じる斜面では、降雨時の 変形も大きい。ただし、累積的な斜面の変位が無い 斜面でも、降雨時の変形が大きい斜面も存在する。
- ③ 室内模型実験のデータ収集により、土質及び雨量 強度が、斜面崩壊直前の斜面変位の大きさ及びその 時間変化に及ぼす影響が大きい。

3. 新型斜面崩壊検知センサーの開発

3.1 背景

土砂災害に対する警戒避難の判断基準は、降雨量を 指標として運用が進んでいるが、事前に避難が勧告さ れた事例は少ないのが実態である。その理由の1つと して、土砂災害は突然発生し災害発生直前まで切迫性 を感じにくいといったことがあげられる。そこで、そ の地域周辺で土砂災害が発生し始めているといった危 険情報を早く入手できれば、行政も住民も自らの危険 として認識し、避難行動につながりやすいと考えられ る(図-7)。現在ある斜面変位に関する観測機器(伸 縮計等)の多くは、斜面崩壊の初期の微少な変動を精 度良く検知することを目的としているため、設置の作 業性、メンテナンスの頻度、耐用年数、価格等の問題 からごく限られた場所でしか使用されていない。

そこで、センサーの機能を斜面崩壊の発生検知に限 定し、安価かつ長期間メンテナンスなしで、斜面に容 易に設置可能な斜面崩壊検知センサーの研究・開発を 行うこととした。

3.2 崩壊検知センサーの開発

センサーを開発するに際し、表-2の開発目標を設定 し、これらの開発目標に基づき実際に表-3に示す検知 センサーを5種類開発した。タイプⅠは地盤の変位、 Ⅱ、Ⅲ、Ⅳは崩壊発生に伴うセンサーの転倒、Ⅴは傾

斜及び土壌水分を監視し崩壊を検知する。 各センサーの特徴は以下の通りである。

- 【タイプI】地盤伸縮に応じセンサー自身が伸縮し、 鉄球がセンサーから落下する仕組みなので電源が 不要である。
- 【タイプⅡ】土中に埋もれた場合でも無線通信が可能 である。
- 【タイプⅢ】安価かつ検知情報が無線で長距離伝送可 能である。

【タイプIV】現在一般家庭の防犯用システムと同じシ ステムを使っており、防犯用システムと併用が可能。 【タイプV】斜面崩壊に影響する土壌水分や傾斜角を 常時観測し崩壊を検知する。

表−2 崩壊検知センサーの開発目標

1	検知機能	勾配が概ね30度以上の急斜面に設置し、 崩壊の発生を時間遅れなく検知する
2	通信方式	無線通信(100m以上伝送可能)
3	電 源	バッテリー駆動(電池寿命5年間以上)
4	検知出力	デジタル出力
5	目標価格	センサー1台数万円程度
6	耐用年数	約10年間
\bigcirc	設置条件	容易かつ人力で設置可能
8	耐環境性	気象条件(降雨・雪・落雷)や環境(立 木・寒冷地)などにより機能障害が生じ ない

試作タイプ	タイプ I	タイプⅡ	タイプⅢ	タイプV	タイプⅣ
信号伝送方式	鉄球落下方式	無線方式 (地中通信)	無線方式 (特定小電力無線)	無線方式 (特定小電力無線)	無線方式 (特定小電力無線)
監視・検知項目	センサー・パイプの伸び量	センサーの転倒	センサーの転倒	センサーの傾斜角度 及び土壤水分	センサーの転倒
特徵	・電源がいらない ・構造が単純 ・保守が容易	・土中埋設可能 ・地形・植生の影響がない	 ・安価 ・設置が容易 ・長距離通信が可能 	 ・安価 ・前兆現象の定量把握可能 (傾斜角度、土壤水分) 	・安価 ・設置が容易 ・既存の防犯装置との 連携が可能
検知信号の 伝送可能距離	10°以上の勾配が 保てる距離	地中30m程度	1200m程度 (直線見通し上)	600m程度 (直線見通し上)	600m程度 (直線見通し上)
センサ電源	不要	内蔵電池	内蔵電池	内蔵電池	内蔵電池
検知出力	デジタル出力 (データロガー接続時、要電源)	デジタル出力	デジタル出力	デジタル出力	デジタル出力
センサ価格	数万円程度	10万円程度	数万円程度	数万円程度	数万円程度
連続使用時間 (電池無交換)	(電池不要)	最大5年程度	最大5年程度	10分間隔計測で 1年間程度	最大2年程度
耐用年数	約10年程度	約10年程度	約10年程度	約10年程度	約10年程度
設置性	人力で設置可能	人力で設置可能	人力で容易に設置可能	人力で容易に設置可能	人力で容易に設置可能
寸法・重量	60W×60D×900H mm 重量:1.5kg	φ114×205L mm 重量:1kg程度	φ83×240L mm 重量:1kg程度	100W×100D×200Hmm程度 重量:0.3kg	120W×160D×91H mm 重量:0.3kg

表-3 崩壊検知センサーの開発目標

3.3 機能と適用性の検討

開発したセンサーの機能と現場適応性を検討するため、以下の機能試験を行った。

(1) 室内模型実験によるセンサー検知機能試験

斜面崩壊を再現可能な室内模型実験装置を用い、実際の崩壊に際し各センサーが崩壊に遅れなく検知可能であるか検証試験を行った。タイプⅡ、Ⅲ、Ⅳセンサーを検証した結果、どのタイプのセンサーにおいても崩壊に遅れなく斜面崩壊発生を検知し、検知機能が確認された。また、タイプⅠ、Ⅴにおいては地盤の変位、傾斜角を正しく測定できることを確認した。

(2) 見通しの良い平地での無線通信機能試験

通信可能距離の確認のために、見通しが取れる土木 研究所の敷地内で無線通信機能試験を実施し、その結 果タイプⅠ、Ⅱを除く各センサーは、300~1000m 程 度の検知情報の通信が可能であった。また、タイプⅢ センサーにおいては、土中が表面を多少覆う程度埋め た場合、降雨にぬれた草の中に設置した場合において も 300m 程度の通信が可能であった。

(3) 山間地域での無線通信機能試験

六甲山地内の山間地域において、無線通信試験を実施し、その結果タイプⅢ、IVセンサーは、100~400m

程度の検知情報の通信が可能であった。また、下記適 用性試験でセンサー設置を行う地点においても通信試 験を行った結果、すべての地点において無線通信によ る検知情報の通信が可能であった。また、タイプⅢセ ンサーにおいては、土中が表面を多少覆う程度埋めた 場合においても通信が可能であった。

(4) 実際の斜面での適用性試験

(3)で無線通信試験を行った六甲山地内の山間地 域において、現在開発センサーを設置し適用性試験を 実施中である。また、実際に設置にかかった時間は、 タイプIはセンサー1つあたり半日程度、タイプⅢは センサー3 つで1~2時間程度要し、既存の伸縮計等 に比べ容易に設置が可能であった。

3.4 まとめ

本章では、センサーの機能を斜面崩壊の発生検知に 限定し、安価かつ長期間メンテナンスなしで、斜面に 容易に設置可能な斜面崩壊検知センサーの研究・開発 を行った。その上で、機能、適用性に関する検証を行った。

4. 斜面崩壊検知センサーの活用

4.1 背景

前章で開発した斜面崩壊検知センサーは、従来のセ ンサーに比べて、安価でかつメンテナンスの労力は軽 減されてはいるものの膨大にある崩壊のおそれのある 斜面を全て監視するためには依然として多大な費用・ 労力を必要とする。これに対して、これまで、土木研 究所火山・土石流チームでは、簡易貫入試験を用いた 表層崩壊発生危険度評価手法の開発を行ってきた(内 田ら、2009)。そこで、同手法を用いて崩壊のおそれが 相対的に高い場所に優先的にセンサーを設置すること ができれば、より効率的・効果的に土砂災害の発生を 監視することができると考えられる。

すなわち、ある崩れやすい斜面で崩壊が発生したと いうことは、その周辺の斜面の崩壊発生の危険性も高 まっていることを示していると考えれば、表層崩壊発 生危険度評価手法と斜面崩壊検知センサーを組み合わ せることにより、地域の「土砂災害の切迫性」を、「崩 れやすい斜面の崩壊発生」と言う形で情報提供できる 可能性が考えられる。そこで、土木研究所と国土交通 省中国地方整備局太田川河川事務所は連携し、土砂災 害に関する警戒避難技術の高度化を目指し、表層崩壊 発生危険度評価手法と共同研究により開発された斜面 崩壊検知センサーを組合せ、新たな監視技術の検討を 行った。

4.2 崩壊発生危険度による監視斜面の抽出

(1) 危険度評価の実施

表層崩壊の発生危険度評価は H-SLIDER 法⁴を用い て実施した。H-SLIDER 法は、実測の地形、土層厚等 を入力し、①間隙水圧が定常状態、②地下水の流れは ダルシー則に従う、③無限長斜面安定解析で安全率が 1.0 となった時点で表層崩壊が発生する、④地表流によ る侵食現象は生じない、と仮定し、表層崩壊が発生す る可能性がある最小の降雨強度 (r_c)を算出し、r_cの大 小で表層崩壊の危険度を評価する手法である。なお詳 細は田村ら (2009) を参考にされたい。

本研究では、広島西部山系内の宮内地区を対象とし 検討を行った。同流域内には、1999年6月に発生した 表層崩壊が3箇所存在する。まず、簡易貫入試験を実 施し、土層厚の分布を求めた。その上で、表層崩壊跡 地内については、周辺の地表面地形から崩壊前の地表 面地形を推定し、実測の基岩面地形を用いて、崩壊前 の土層厚を算出した。r_cの算出結果を図-8に示す。図 に示したとおり、崩壊地内のr_cの値は崩壊地外に比べ て概ね小さく、崩壊の危険度を評価できていることを 確認した。

図-8 宮内地区における表層崩壊発生危険度評価結 果 (r_oの算出結果)

図-9 無線試験の概要

(2) 監視候補斜面の抽出

図-8 に示した r_cの算出結果より、1999 年に崩壊が 発生していない斜面のうち、図-8 に破線で示した範囲 のr_cが小さくこの範囲を監視候補斜面とした。さらに、 崩壊地内は依然として不安定な土砂が堆積しており、 図-8のS2およびS3付近に点線で示した範囲に比較的 厚く不安定な土砂が堆積していたことから、この範囲 も監視候補斜面に加えた。

4.3 斜面崩壊検知センサーの設置

(1) 無線通信試験の実施

次に、崩壊検知センサーの無線通信可能距離は、伝 搬経路上に存在する植生、地形などの状況によって大 きく左右されるため、宮内地区において無線通信試験 を実施した。試験には、転倒検知方式で特定小電力無 線(1mW)を用いた斜面崩壊検知センサーを用いた。 試験は、図-9に示す通り、監視候補斜面のS2、S3に 加えて、無線機能の確認のため、図-9に示す計5地点 で実施した。試験では、センサーから発する無線信号 の受信強度を測定した。

試験結果の値を図-9 に示す。S1-A は、受信強度が -140.4~-139.1dBm と小さかった。これは、フレネルゾ ーン(センサ~受信機間を結ぶ、無線伝搬範囲を示す 回転楕円体)内における遮蔽面積(直線見通し上に存 する尾根部が相当する)の割合が、図-10 に断面図(図 -9の破線に沿った側線の縦断図)を示したように大き いためと考えられる。S1-B についてはS1-A に近い位 置条件ながら、標高が高いことなどにより遮蔽面積の 割合が小さくその影響を回避できているものと考えら れる。S2~S4 については大きな地形遮蔽も少なく、高 い受信レベルを得られた。これらの結果により、宮内 地区の通常時のノイズレベルが-141.4dBm 程度である ことから、受信レベルが-136.4dBm 以上の箇所は通信 可能であったとすれば、S1-B 及び S2~S4 においては 斜面崩壊検知センサーの適用が可能であると言える。

(2) 斜面崩壊検知センサーの設置

以上の結果より、2009 年 5 月に監視斜面候補の S2、S3 を含む S1-B 及び S2~S4 の 4 箇所に斜面崩 壊検知センサーを設置し(写真-1)、図-9 の R 地点 に受信機を設置した(写真-2)。その上で、検知情報 を事務所及び工事関係者へ伝達するために検知信号 をサイレン・回転灯及び携帯電話伝送装置に入力す るようにした(写真-2、3)。また、同地は商用電源 がないため、ソーラーパネルおよびバッテリーで稼 動できるようにした。

(4) 設置後の問題とその対応

設置後、実際には崩壊が発生していないにも関わ らず、崩壊検知情報が携帯電話伝送装置からメール配 信されるいわゆる誤検知の問題が2009年7月に生じた。 調査の結果、崩壊検知センサー受信機において検知信 号を受信・検知出力した記録は残っていなく、記録部 の回路が雷の影響と思われる故障があった事などから、 携帯電話伝送部が雷等の影響によるノイズによりメー ル配信されたものと考えられた。実際、誤検知のタイ ミングと宮内周辺の落雷の時刻はほぼ同時であり、落 雷によるノイズが携帯電話伝送部の誤作動を起こした と推測するものであった。

以上の経験を踏まえ、これまで接点信号が入力され ると短い時間でもメール通報するような構造になって いたのに対し、接点入力部にタイマー回路を追加する ことで約5秒間、接点信号が継続した場合のみメール

写真-1 斜面崩壊検知センサー

写真-2 受信部及び携帯電話伝送部

写真-3 警報部

通報するようにした。これにより、雷など瞬間的なノ イズにより伝送装置による誤発報が発生しないように 改良した。同様に回路内に避雷素子及びノイズフィル ターを追加して落雷対策やノイズ対策を強化した。

4.4 今後の課題

ここでは、斜面崩壊の発生情報をメール等により、 斜面崩壊の発生直後に得られるシステムを構築した。 このシステムにより得られる斜面崩壊発生のリアルタ イム情報は、これまでの情報に比べ切迫感のある情報 として体感でき、行政や住民が避難に必要なタイミン グを今まで以上に適切に判断することが容易になるこ とが期待される。特に、ここで示した表層崩壊発生危 険度評価手法などを用いて斜面の崩壊危険度を評価し、 一連の降雨の比較的早い時刻に崩壊が発生すると考え られる崩壊発生危険度の高い斜面に、斜面崩壊検知セ ンサーを設置することができれば、より効果的な情報 が得られるようになると考えられる。

今後は、本章で示したような取り組みを広げていき、 センサーの安定性向上、各種の環境における耐久性の 確認を進めていく必要がある。また、同時に、土砂災 害発生時刻に関するデータの蓄積をはかるとともに、 土砂災害に対する警戒避難における土砂災害発生情報 の有効性の検証を進めていく予定である。

5. まとめ

本研究では、はじめに降雨時及び無降雨時の斜面変 形の実態の把握を行った。並行して、本研究では、現 状では、膨大にある土砂災害の危険箇所を監視する適 切な機器がないことから、斜面の変動及び崩壊を検知 する新たなセンサー(斜面崩壊検知センサー)の開発 を行った。斜面崩壊検知センサーの開発にあたっては、 安価でメンテナンスが容易であることを重視し開発を 行った。その上で、近年、土木研究所で開発した表層 崩壊発生危険度評価手法と組み合わせることにより、 より効果的に斜面、土砂災害を監視できる手法を提案 した。

参考文献

- 内田太郎・盛 伸行・田村圭司:「表層崩壊に起因 する簡易な土石流発生危険度調査・評価手法」、 第50巻、第9号、pp. 20-25、2008
- 佐々木靖人、藤井厚企、浅井健一、中村康夫:「ロ ームに埋積された谷頭斜面のマスムーブメント の過程」、応用地質、第35巻、第5号、pp.205-217, 1994
- 田村圭司・内田太郎・秋山浩一・盛 伸行・寺田秀 樹:「表層崩壊に起因する土石流の危険度評価マ ニュアル(案)」、土木研究所資料No.4126、2009