ISSN 0386-5878 土木研究所資料第 4346 号

土木研究所資料

河川堤防の液状化対策の手引き <設計計算例>

平成29年8月

(国研)土木研究所 地質・地盤研究グループ土質・振動チーム

Copyright © (2017) by P.W.R.I.

All rights reserved. No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the Chief Executive of P.W.R.I.

この報告書は、国立研究開発法人土木研究所理事長の承認を得て刊行したものである。したがって、本報告書の全部又は一部の転載、複製は、国立研究開発 法人土木研究所理事長の文書による承認を得ずしてこれを行ってはならない。

土 木 研 究 所 資 料 第 4346 号 2017 年 8 月

河川堤防の液状化対策の手引き <設計計算例>

土質・振動チーム

上席研究員	佐々木哲也
主任研究員	石原 雅規
交流研究員	秋場 俊一
交流研究員	地蔵 智樹

要 旨:

河川堤防の液状化対策工法の手引き(土木研究所資料第4332号)で示された液状化対策工の設計法の 具体的な計算例を示すものである。

キーワード:河川堤防、液状化判定

河川堤防の液状化対策の設計手法検討委員会 名簿

委員長	岡村 未対	愛媛大学大学院理工学研究科	教授
委員	安田 進	東京電機大学理工学部建築·都市環境学系	教授
委員	大賀 政秀	(株)ダイヤコンサルタント 関東支社地盤技術部	部長
委員	大林 淳	(株)不動テトラ 地盤事業本部	技術部長
委員	乙志 和孝	(一社)鋼管杭·鋼矢板技術協会	委員
委員	河野 謙治	(一社)鋼管杭·鋼矢板技術協会	委員
委員	佐々木哲也	(国研)土木研究所地質・地盤研究グループ	上席研究員
委員	杉原 直樹	国土交通省国土技術政策総合研究所河川研究部	河川構造物管理研究官
委員	高橋 真一	(株)大林組 技術本部技術研究所地盤技術研究部	上席研究員
委員	高橋 裕輔	国土交通省水管理·国土保全局治水課	技術調整官
委員	平井 卓	(株)竹中土木 技術·生産本部	技術部長
委員	松尾 修	東京コンサルタンツ(株)	技術本部長
委員	黛 廣志	川崎地質(株)	技術企画部長
委員	李 圭太	(株)建設技術研究所 大阪本社	水工部長
			(民間・行政からの委員は五十音順)
幹 事	伊藤 浩二	(株)大林組 技術本部技術研究所構造技術研究部	主任研究員
幹 事	大作 和弘	国土交通省水管理·国土保全局治水課	課長補佐
幹 事	菅野 雄一	復建調查設計(株)東京支社第一技術部	地盤環境課長
幹 事	小西 一生	(株)竹中土木 技術·生産本部	技術開発部部長
幹 事	鈴木 亮彦	(株)不動テトラ 地盤事業本部 技術部	技術企画課長
幹 事	佐伯 宗大	(株)エイト日本技術開発東京支社地盤技術グループ	グループサブマネージャー
幹 事	田中 隆太	(一社)鋼管杭•鋼矢板技術協会	委員
幹 事	濱野 雅裕	(株)エイト日本技術開発関西支社耐震・保全グループ	グループマネージャー
幹 事	藤井 照久	復建調査設計(株)本社	防災部長
幹 事	原田 健二	(株)不動テトラ 地盤事業本部 技術部	部長
幹 事	東中 邦夫	(株)竹中土木 技術·生産本部技術開発部	
幹 事	樋口 俊一	(株)大林組 技術本部技術研究所構造技術研究部	上席研究員
幹 事	真野 基大	(株)エイト日本技術開発東京支社地盤技術グループ	
幹 事	山田 祐樹	(株)大林組 技術本部技術研究所地盤技術研究部	主任研究員
幹 事	脇中 康太	川崎地質(株)技術企画部	課長代理
			(五十音順)
事務局	石原 雅規	(国研)土木研究所地質・地盤研究グループ	主任研究員
事務局	谷本 俊輔	(国研)土木研究所地質・地盤研究グループ	研究員
事務局	荒木 裕行	(国研)土木研究所地質・地盤研究グループ	専門研究員
事務局	秋場 俊一	(国研)土木研究所地質・地盤研究グループ	交流研究員
事務局	地蔵 智樹	(国研)土木研究所地質・地盤研究グループ	交流研究員

河川堤防の液状化対策の設計手法検討委員会 計算例 WG 名簿

秋場	俊一	(国研)土木研究所地質・地盤研究グループ	交流研究員	
安達	健司	ALID 研究会		
石原	雅規	(国研)土木研究所地質・地盤研究グループ	主任研究員	
乙志	和孝	(一社)鋼管杭·鋼矢板技術協会	委員	
菅野	雄一	復建調查設計(株)東京支社第一技術部	地盤環境課長	
河野	謙治	(一社)鋼管杭·鋼矢板技術協会	委員	
佐伯	宗大	(株)エイト日本技術開発東京支社地盤技術グループグループ	サブマネージャー	
鈴木	亮彦	(株)不動テトラ 地盤事業本部 技術部	技術企画課長	
田中	隆太	(一社)鋼管杭·鋼矢板技術協会	委員	
地蔵	智樹	(国研)土木研究所地質・地盤研究グループ	交流研究員	
藤井	照久	復建調査設計(株)本社	防災部長	
眞野	基大	(株)エイト日本技術開発東京支社地盤技術グループ		
脇中	康太	川崎地質(株)技術企画部	課長代理	
			(五十音	f順)

目次

第1	章	はじ	めに	1
1.1	l	はじ	どめに	1
1.2	2	本計	·算例の取り扱い上の留意事項	2
第2	章	本計	-算例の対象と耐震性能照査手法	3
2.1	l	液状	化対策の設計の手順	3
2.2	2	本計	·算例で対象とした対策工法	3
2.3	3	有限	要素法を用いた自重変形解析法	4
	2.3.1	1	解析法の概要	4
	2.3.2	2	解析の手順	5
	2.3.3	3	非液状化土の弾完全塑性応力~ひずみ関係	. 10
	2.3.4	4	体積非圧縮 FEM 要素のロッキング	. 11
第3	章	計算	[例1: 締固め工法による対策(その1)	.14
3.1	l	設計	·手順	.14
3.2	2	設計	·条件	. 15
	3.2.1	1	地盤条件	. 15
	3.2.2	2	入力地震動条件	. 16
	3.2.3	3	液状化判定	. 17
	3.2.4	1	照查基準	. 19
	3.2.5	5	対策工諸元設定上の制約条件	. 19
	3.2.6	5	浸透安全性の評価に用いる外力	. 19
3.3	3	現況	しの照査	. 20
3.4	1	対策	後の照査	. 24
	3.4.1	1	対策工諸元の設定	.24
	3.4.2	2	耐震性能照查	. 25
	3.4.3	3	浸透安全性照查	. 32
第4	章	計算	「例 2 : 締固め工法による対策(その 2)	. 34
4.1	l	設計	·手順	. 34
4.2	2	設計	·条件	. 35
	4.2.1	1	地盤条件	. 35

4.2.2	2 入力地震動条件	
4.2.3	3 液状化判定	
4.2.4	4 照査基準	
4.2.5	5 対策工諸元設定上の制約条件	
4.2.6	6 浸透安全性の評価に用いる外力	
4.3	現況の照査	
4.4	対策後の照査	
4.4.1	1 対策工諸元の設定	
4.4.2	2 耐震性能照查	
4.4.3	3 浸透安全性照查	
第5章	計算例3:固結工法による対策(その1)	
5.1	設計手順	
5.2	設計条件	
5.2.1	1 地盤条件	
5.2.2	2 入力地震動条件	60
5.2.3	3 液状化判定	61
5.2.4	4 照查基準	64
5.2.5	5 対策工諸元設定上の制約条件	64
5.2.6	5 浸透安全性の評価に用いる外力	65
5.3	現況の照査	
5.4	対策後の照査	
5.4.1	1 対策工諸元の設定	
5.4.2	2 耐震性能照查	
5.4.3	3 浸透安全性照查	
第6章	計算例4:固結工法による対策(その2)	
6.1	設計手順	
6.2	設計条件	
6.2.1	1 地盤条件	
6.2.2	2 入力地震動条件	
6.2.3	3 液状化判定	110
6.2.4	4 照査基準	
6.2.5	5 対策工諸元設定上の制約条件	
6.2.6	6 浸透安全性の評価に用いる外力	
6.3	現況の照査	

6.4	対策後の照査	118
6.4.	l 対策工諸元の設定	118
6.4.2	2 耐震性能照查	
6.4.3	3 浸透安全性照查	
第7章	計算例 5 : 鋼材を用いた工法による対策(その 1)	
7.1	設計手順	
7.2	設計条件	
7.2.	1 地盤条件	
7.2.2	2 入力地震動条件	
7.2.	3 液状化判定	
7.2.4	4 照査基準	
7.2.5	5 対策工諸元設定上の制約条件	
7.2.0	5 浸透安全性の評価に用いる外力	
7.3	現況の照査	
7.4	対策後の照査	
7.4.	l 対策工諸元の設定	
7.4.2	2 耐震性能照查	
7.4.3	3 浸透安全性照查	
7.4.4	4 対策工諸元設定震度における液状化層がない場合の設計方法	
第8章	計算例 6:鋼材を用いた工法による対策(その 2)	
8.1	設計手順	
8.2	設計条件	
8.2.	1 地盤条件	
8.2.2	2 入力地震動条件	
8.2.3	3 液状化判定	
8.2.4	4 照查基準	
8.2.5	5 対策工諸元設定上の制約条件	
8.2.0	5 浸透安全性の評価に用いる外力	
8.3	現況の照査	
8.4	対策後の照査	
8.4.	1 対策工諸元の設定	
8.4.2	2 耐震性能照查	
8.4.3	3 浸透安全性照查	
第9章	計算例 7: 堤体液状化対策	

9.1	設計手順	213
9.2	設計条件	214
9.2.	1 地盤条件	214
9.2.2	2 入力地震動条件	216
9.2.3	3 液状化判定	217
9.2.4	4 照查基準	220
9.2.5	5 対策工諸元設定上の制約条件	220
9.2.0	6 浸透安全性の評価に用いる外力	221
9.3	現況の照査	221
9.4	対策後の照査	225
9.4.	1 対策工諸元の設定	225
9.4.2	2 耐震性能照查	229
9.4.3	3 浸透安全性照查	234
第 10 章	おわりに	236

第1章 はじめに

1.1 はじめに

平成28年3月に「河川堤防の液状化対策の手引き(土木研究所資料第4332号、以下、 手引き)」を刊行した。「河川堤防の液状化対策の手引き<設計計算例>(土木研究所資料 第4346号、以下、本計算例)」は、この手引きの設計部分に対応するものである。

手引きの設計には、様々な式や方法が掲載されており、その適用方法や入力値の設定方 法などを含め全てを網羅できているわけではない。このような部分を補足するとともに、 手引きに示された設計方法を正しく理解して頂くことを目的としてまとめたのが、本計算 例である。

手引きには、締固め工法、固結工法、鋼材を用いた工法、堤体液状化対策工法の4種類の対策工法が含まれているため、本計算例では設計方法の特徴がよく現れる条件を工法毎 に1~2種類設定した。各条件について、対策前の耐震性能照査結果も含め、対策工の設計 計算過程を詳しく記載した。

手引きは、「河川堤防の液状化対策工法設計施工マニュアル(案)(土木研究所資料第3513 号、以下、マニュアル)」の改定版に位置づけられるものである。手引きの設計に係る主な 改定項目に関しては、本計算例においては、以下のとおり対応した。

(1) 耐震性能照査の導入

上位基準である「河川構造物の耐震性能照査指針・解説 II.堤防編(国土交通省水管理・ 国土保全局治水課、平成28年3月、以下、指針)」に対応し、地震後の堤防高さに関する 照査を手引きにも導入した。本計算例では、地盤変形解析方法の概要を示した上で、特に 解析条件の設定については詳しく示した。

(2) 浸透安全性照査の導入

手引きでは、耐震対策の設計における浸透安全性照査を明確化したが、確保できない場 合の対応については詳しく記載できていない。本計算例では、浸透安全性照査や確保でき ない場合の対応の具体例を示した。

(3) 固結工法の対策工諸元設定

マニュアルの外的安定、内的安定検討を踏襲しつつ、荷重の算定方法や照査方法、項目 に関して大幅に改定した。この改定の結果、マニュアルに比べ、大幅なコストダウンが可 能となる場合もある。本計算例では、荷重や照査項目については、細かく数値を示し、計 算の過程を全て追えるよう記載した。

本計算例に記載した方法は文字通り「例」であり、実際に適用しようとする現場条件に よっては、不適切であったり、不適切とは言えないまでも他により優れた方法が存在する 場合もある。本計算例では両のり尻に同じ工法で対策を施す例が多数登場するが、現実に は川表側と川裏側で同じ工法を施す方が稀であろう。実際の設計においては、手引きや本 計算例、さらには手引きの上位基準指針等の趣旨を踏まえ、現場条件に応じた対応が必要 となる。

手引きに示された設計方法が正しく理解され、合理的で質の高い社会資本ストックの形 成に繋がることを期待する。

1.2 本計算例の取り扱い上の留意事項

本計算例で示した条件や検討は、設計方法の補足と設計方法を正しく理解して頂くため に設定・実施したもので、実際の現場条件等と異なる場合がある。以下については、第2 章~第9章であまり触れられていないが、留意する必要がある事項となるので、まとめて おく。

(1) 地盤調査

本計算例では、検討断面として、簡略化されたものを用いた。実際の堤防断面はこれよ りも複雑な場合がほとんどである。堤内外にボーリングやこれらを補間するサウンディン グを実施し、土層厚、層序、縦横断の連続性や物性を把握する必要がある。地盤調査の方 法や密度については、「河川砂防技術基準 調査編(国土交通省水管理・国土保全局、平成 24 年 6 月)」第16 章や手引き第3 章等を参考に実施するとよい。

(2) モデル化・定数設定

同じ土層とされている場合でも、例えば上層と下層で、N値(強度)の分布や粒度組成の 分布に傾向がみられる場合などには、土層を細分化してモデル化・定数設定を行うことも 検討する必要がある。そのためには、ボーリング柱状図の記事や物理試験結果等に立ち戻 って確認することも重要である。また、定数を設定する際には、礫打ちや局所的な粘性土 などの異常値を除去した上で、近い値を集めて平均することは当然である。その中でも、 自重変形解析は特に繰返し三軸強度比 *R*Lの感度が高いので、慎重に設定しなければならな い。N値と細粒分含有率から推定するのが標準的な *R*Lの設定方法であるため、液状化の惧 れのある土層では、標準貫入試験を実施した全ての深度で物理試験を実施することが基本 である。

(3) 浸透安全性照査と浸透対策

本計算例では、手引きにしたがって、液状化対策を実施することにより浸透安全性を示す指標(円弧すべり安全率や局所動水勾配等)が悪化する場合に、補助工法を検討した。

液状化対策の実施に合わせて浸透対策を実施するのが合理的な場合には、「河川堤防の構造検討の手引き(国土技術研究センター、平成24年2月)」の照査基準も満足する補助工法を検討するとよい。

第2章 本計算例の対象と耐震性能照査手法

2.1 液状化対策の設計の手順

液状化対策の設計の手順を図2.1.1に示す。

このうち、本計算例では破線で囲われた部分を対象に記載する。

図 2.1.1 設計の手順

2.2 本計算例で対象とした対策工法

本計算例では、表2.2.1で示す工法を対象に設計を行った。

「河川堤防の液状化対策の手引き」において、基礎地盤の液状化に対しては、のり尻付 近の基礎地盤への締固め工法、固結工法、鋼材を用いた工法を対象とされている。堤体の 液状化に対しては、押え盛土工法やドレーン工法を対象とされている。

締固め工法に関しては、浸透安全性への影響も比較的少ないと考えられることから、の り尻付近の基礎地盤だけでなく堤体直下の基礎地盤全体に適用する場合も対象とされてい るが、本計算例では対象としていない。

堤体の液状化する範囲がのり尻よりも低い場合等には、基礎地盤の液状化対策だけで堤 体の液状化対策を実施しなくても、十分な耐震性能が確保できる場合も想定されるが、本 掲載例では対象としていない。

対象	工法	大別	位置	代表的な施工法
基礎地	締固め工法	液状化抑制(密度增大)	のり尻直下地盤	サンドコンパクションパイル工法
盤の液	(3章,4章)	/被害軽減		静的締固め砂杭工法
状化		液状化抑制(密度增大)	堤体直下全体	砂圧入式静的締固め工法
			※本計算例対象外	コンパクショングラウチング工法
	固結工法	液状化抑制(固結)/	のり尻直下地盤	機械攪拌工法
	(5章,6章)	被害軽減		高圧噴射攪拌工法
				注入固化工法
	鋼材を用い	被害軽減	のり尻直下地盤	自立(鋼管)矢板工法
	た工法			自立(鋼管)矢板工法(排水機能付き)
	(7章,8章)			
堤体の	押え盛土	液状化抑制(有効応力	のり尻~のり面	
液状化	工法 (9章)	の増大、粒度の改良)		
		/被害軽減		
	ドレーン	液状化抑制(有効応力	川裏のり尻付近	
	工法 (9章)	の増大、粒度の改良)		
		/被害軽減		

表 2.2.1 手引きで対象とした対策工法

2.3 有限要素法を用いた自重変形解析法

2.3.1 解析法の概要

設計における耐震性能照査は、有限要素法を用いた自重変形解析法、流体力学に基づく 永久変形解析法等を用いることができる。本計算例では有限要素法を用いた自重変形解析 法を用いて設計を行った。有限要素法を用いた自重変形解析法の概要を以下に示す。

自重変形解析法では、液状化に伴う地盤及び構造物の変形を、液状化の発生による流動 的変形とその後の過剰間隙水圧消散に伴う圧密的沈下に分けて求める。前者では、液状化 した地盤土要素の急激な剛性消失によって生じる不平衡力が駆動力となり、地盤土要素は 土骨格と間隙水が一体化(非排水条件)して変形すると考える。非排水条件下で剛性を消 失した地盤土要素では、液状化前の有効上戴圧が間隙水に転化されて過剰間隙水圧が発生 するから、その消散に伴う自重圧密沈下が後者となる。

ただし、ここでは次の仮定を設けている。

- ① 変形場は2次元平面ひずみ場とする。
- ② 発生するひずみは微小である。
- ③ 土粒子及び間隙水は非圧縮性とする。

2.3.2 解析の手順

解析のフローを図2.3.1に示す。

図 2.3.1 解析フロー

(1) 地震前地盤内応力解析

液状化に伴う流動変形は、液状化層の土骨格が地震前に受けていた応力を駆動力として 生じるので、液状化層の地震前有効応力解析はきわめて重要である。一般に、解析の対象 となる地盤や土構造物は自然堆積状態から人工的改変を加えられているので、そのプロセ スを模擬した段階的改変過程解析を実施する必要がある。例えば河川堤防の盛土なら以下 の工程解析を実施して、地震前の応力分布を求める。

自然堆積地盤の自重解析 → 盛土や掘削工程の解析 → 地下水位変動解析(必要なら)

また、液状化層を含む表層地盤土の強度は小さいので、盛土や掘削に伴って破壊を生じ る領域も表れる。地盤土要素はその破壊基準を超える応力を保有しえないから、上記の工 程解析は適切な破壊基準を考慮した有効応力法による非線形解析としなければならない。 この場合、解くべき方程式は増分形表記で次式のようになる。

$$[K]\{\Delta u_i\} = \{F_{i-1}\} + \{\Delta F_i\} - [B_c]^T \{\sigma_{i-1}\} V_E - \{K_p\} p_0$$
(2.1)

 $\{\Delta u_i\}: i$ 工程の節点変位増分ベクトル [K]: 有効応力に関する剛性マトリクス

- {*F*_{*i*-1}}:前工程終了時の作用外力ベクトル(自重、要素境界作用外力、境界に作用する外水圧)
- {ΔF_i}: i工程の作用外力増分ベクトル
- [B_c]:節点変位を要素中心でのひずみに変換するマトリクス
- $\{K_p\}$:要素水圧 p_0 を節点力に変換するベクトル V_E :要素面積
- $\{\sigma_{i-1}\}$:前工程終了時の要素中心有効応力ベクトル(圧縮正) $\{\sigma_{i-1}\}^T = \{\sigma_{x_{i-1}} \sigma_{y_{i-1}} \tau_{xy_{i-1}}\}$
- *p*₀:要素の間隙水圧(中心で一定)

図 2.3.2 要素の局所座標系 (ξ-η)と全体座標系 (x-y) ((x_i, y_i)は *i* 節点の x, y 座標)

地盤土要素に一次のアイソパラメトリック四辺形要素を用いるとすると、要素内の変位 分布は正規化局所座標(ξ-η系)の双一次関数となるが、後述する変形のロッキングを避け るため、[K]の要素内積分には次数低減積分を、要素中心で評価したひずみマトリクス[B_c]を 用いて次式で求めることができる。

$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} B_c \end{bmatrix}^T \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} B_c \end{bmatrix} V_E$$

$$\begin{bmatrix} \{b_x\}^T & 0 \\ 0 & \{b_y\}^T \\ \{b_y\}^T & \{b_x\}^T \end{bmatrix}, \quad \begin{cases} b_x\}^T = \frac{1}{2V_E} \{y_\ell - y_j \quad y_i - y_k \quad y_j - y_\ell \quad y_k - y_i\} \\ , \quad \{b_y\}^T = \frac{1}{2V_E} \{x_j - x_\ell \quad x_k - x_i \quad x_\ell - x_j \quad x_i - x_k\} \end{cases}$$

$$(2.2)$$

[D]:応力~ひずみマトリクス(弾性または弾塑性)

同様に式(2.1)のベクトル{K_p}は次式で与えられ、応力及び水圧は要素中心値である。

$$\{K_p\} = \begin{cases} \{b_x\}\\ \{b_y\} \end{cases} V_E \tag{2.3}$$

間隙水圧 po は、地下水圧が静水圧分布であれば水面高から容易に求め得るが、地下水位 面が傾斜している場合などの非静水圧分布の場合は事前に定常浸透解析を実施して要素毎 に求めておく。この定常浸透解析には差分法の一種である赤井・田村法の改良形¹⁾がある。

(2) 液状化流動解析

流動解析のイメージを図2.3.4に示す。図の点線は地震前の平面ひずみ場における最大 せん断応力 τ_m ~最大せん断ひずみ γ_m 関係で、地震前応力 τ_{m1} が作用している。これに対し、 液状化後の $\tau_m \sim \gamma_m$ 関係は実線で表されている。みかけのせん断剛性 $G_1 \ge G_2$ は、液状化さ せた土の静的せん断試験から得られるが、液状化安全率 F_L と液状化層の液状化強度比 R_L が得られていれば安田らの提案式(図2.3.5)によって推定することが可能である。実現象 では地震による繰返しせん断応力の作用に伴って、図の点Aは右下方に移動し、点Cに至 る。これに対し、液状化に伴うせん断剛性の低下が急激に生じて図の点Aが点Bに移動す ると考えることができる。点Bのせん断応力を τ_{m2} とすると、せん断剛性の低下によって負 担し得なくなった不釣合い応力 $\Delta \tau_m (= \tau_{m1} - \tau_{m2})$ は解放($\Delta \tau_m$ に等価な節点力を再負荷する) され、それを駆動力として点Bは点Cに移動する。このプロセス(点B→点C)の変形解 析には非排水条件が課されるので、地震前に作用していた有効上載圧に匹敵する過剰間隙 水圧が発生したと考えることもできる。

図 2.3.4 流動解析の方法

図 2.3.5 G₁/σ。"~FL関係(安田・稲垣)

液状化流動解析では、液状化層及びその周辺の飽和細粒土要素について非排水条件が課 されるので、解くべき増分形の方程式は次式で与えられる。

$$\begin{bmatrix} \begin{bmatrix} K \end{bmatrix} & \{K_p\} \\ \{K_p\}^T & 0 \end{bmatrix} \begin{cases} \{\Delta u_i\} \\ \Delta p_i \end{cases} = \begin{cases} \{\Delta F_i\} \\ 0 \end{cases}$$
(2.4)

式(2.4)の{Δ*u_i*}とΔ*p_i*は*i*番目の増分計算における節点変位増分ベクトルと間隙水圧増分 で、剛性マトリクス[*K*]は液状化層の場合、次式となる。(但し復活剛性域では*G*₁, *K*₁を復 活剛性 *G*₂, *K*₂ に置き換える)

$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} B_c \end{bmatrix}^T \begin{bmatrix} D_1 \end{bmatrix} \begin{bmatrix} B_c \end{bmatrix} V_E$$

$$\begin{cases} \begin{bmatrix} D_1 \end{bmatrix} = \begin{bmatrix} K_1 + \frac{4}{3}G_1 & K_1 - \frac{2}{3}G_1 & 0 \\ K_1 - \frac{2}{3}G_1 & K_1 + \frac{4}{3}G_1 & 0 \\ 0 & 0 & G_1 \end{bmatrix}, \quad K_1 = \frac{2(1+\nu)G_1}{3(1-2\nu)}, \\ G_1 : 液状化土の低下せん断剛性 \\ \nu : ポアソン比 (液状化前後で一定) \end{cases}$$

式(2.4)の右辺は、液状化層の剛性低下に伴う解放応力に等価な節点力ベクトルで、i番目の増分段階では、

$$\begin{aligned} \{\Delta F_i\} &= \frac{1}{N_i} \left(\{F\} - \{F_{\sigma_{i-1}}\} - \{K_p\} p_{i-1}\right) , \ \{F_{\sigma_{i-1}}\} = \left[B_c\right]^T \{\sigma_{i-1}\} V_E \ , \ N_i = N - i + 1 \end{aligned}$$

$$\begin{cases} \{F\} : 液状化前の外力ベクトル \quad N : 流動解析の全増分回数 \\ \{\sigma_{i-1}\}, p_{i-1} : 増分前段階の要素応力と間隙水圧 \end{aligned}$$

と表されるが、最初の増分計算時には次式で{F_m}が求められる。

$$\{F_{\sigma_0}\} = [B_c]^T [D_1] \{\varepsilon_0\} V_E \quad , \quad \{\varepsilon_0\}^T = \{\varepsilon_{x0}, \varepsilon_{y0}, \gamma_{xy0}\}$$

$$(2.7)$$

ここに、 $\{\varepsilon_0\}$ は地震前に発生していたひずみであるが、非線形の応力~ひずみ関係が適用 されている要素では、地震前の応力 $\{\sigma_0\}$ に対応した弾性の応力~ひずみマトリクス $[D^e]$ を 用いて次式で求める。

$$\{\varepsilon_0\} = \left[D^e\right]^{-1} \{\sigma_0\} \tag{2.8}$$

一方、非液状化土には解放応力が発生しないので、最初の増分計算時には $\{\Delta F_i\}$ がゼロとなるが、液状化土が変形するとその影響を受けて応力と水圧が変化するので、式(2.4)の右辺は次式とする。

$$\{\Delta F_i\} = \{F\} - [B_c]^T \{\sigma_{i-1}\} V_E - \{K_p\} p_{i-1}$$
(2.9)

また、不飽和土層では間隙水圧が p=0 であるから式(2.4)から p の項を省くことができる。

(3) 液状化後の過剰間隙水圧消散に伴う沈下解析

式(2.4)による流動解析を実施すると、結果として液状化層の過剰間隙水圧Δ*p*が得られる。この過剰間隙水圧Δ*p*は地震後の時間経過とともに消散するから、それに伴う変形解析 を液状化後の沈下解析と呼ぶ。この沈下変形は排水条件で進行するので、液状化層及び周辺の飽和土層要素の増分形要素剛性方程式は式(2.1)と同形になり次式で表される。

式 (2.10) に含まれる応力~ひずみマトリクス $[D_c]$ には、地震時の繰り返しせん断によっ て劣化した土骨格のみかけのせん断剛性 G_c を用いる必要があるが、ここでは図 2.3.6 の室 内試験結果を適用し、液状化安全率 F_L と相対密度 D_r に対応する圧縮ひずみ $\varepsilon_v(F_L, D_r)$ を読 みとる。液状化層の圧縮を一次元的 ($\Delta \varepsilon_x = 0$) と仮定すると、消散する過剰水圧 Δp が鉛直有 効応力増分 $\Delta \sigma_y$ に変化して鉛直ひずみ $\Delta \varepsilon_y (= \varepsilon_v)$ を生じさせることになるから次式が成立す る。

$$\Delta \sigma_{y} = \Delta p = \left(K_{c} + \frac{4}{3}G_{c}\right)\Delta \varepsilon_{y} = \left(K_{c} + \frac{4}{3}G_{c}\right)\varepsilon_{y}$$
(2.11)

K_c,G_c:液状化後沈下時のみかけの体積剛性とせん断剛性

さらに、一次元圧縮時のみかけのポアソン比をv=1/3と仮定すると、みかけの体積剛性 K_c は

$$K_c = \frac{2(1+\nu)}{3(1-2\nu)}G_c = \frac{8}{3}G_c$$
(2.12)

となるから、式(2.12)を式(2.11)に代入してみかけのせん断剛性 Gc を設定し得る。

$$4G_c = \frac{\Delta p}{\varepsilon_v} \quad , \quad G_c = \frac{1}{4} \frac{\Delta p}{\varepsilon_v} \tag{2.13}$$

従って、沈下解析時の応力~ひずみ関係は次式で与えられ、式(2.10)の[D_c]が設定される。

$$\begin{cases} \Delta \sigma_{x} \\ \Delta \sigma_{y} \\ \Delta \tau_{xy} \end{cases} = \begin{bmatrix} K_{c} + \frac{4}{3}G_{c} & K_{c} - \frac{2}{3}G_{c} & 0 \\ K_{c} - \frac{2}{3}G_{c} & K_{c} + \frac{4}{3}G_{c} & 0 \\ 0 & 0 & G_{c} \end{bmatrix} \begin{cases} \Delta \varepsilon_{x} \\ \Delta \varepsilon_{y} \\ \Delta \gamma_{xy} \end{cases} = \begin{bmatrix} 4G_{c} & 2G_{c} & 0 \\ 2G_{c} & 4G_{c} & 0 \\ 0 & 0 & G_{c} \end{bmatrix} \begin{cases} \Delta \varepsilon_{x} \\ \Delta \varepsilon_{y} \\ \Delta \gamma_{xy} \end{cases}$$
(2.14)
$$\begin{bmatrix} D_{c} \end{bmatrix} = \begin{bmatrix} 4G_{c} & 2G_{c} & 0 \\ 2G_{c} & 4G_{c} & 0 \\ 2G_{c} & 4G_{c} & 0 \\ 0 & 0 & G_{c} \end{bmatrix}, \quad G_{c} :$$
 \vdots \vdots \vdots \vdots

2.3.3 非液状化土の弾完全塑性応力~ひずみ関係

液状化層の上位に分布する不飽和表土層や盛土は、下位の液状化層の流動変形に伴って 大きな影響を受ける。これらの土層には、液状化層の変形を阻害することなく、安定して 大きなひずみを生じつつ変形し得る機能が要求されることになるが、簡易な弾完全塑性の 構成モデルを用いることで対応することができる。

せん断破壊にモール・クーロン則を採用し、最小主応力σ3 が負とならない引張り破壊基準 を併立させると降伏関数は次式で与えられる。

 $f = \tau_{\max} - \sigma_n \sin \phi - c \cos \phi = 0$, $\sigma_n \ge \frac{c \cos \phi}{1 - \sin \phi}$ (2.15)(せん断降伏関数)

(引張り降伏関数)
$$f = -\sigma_3 = \tau_{\max} - \sigma_n = 0$$
, $\sigma_n < \frac{c \cos \phi}{1 - \sin \phi}$ (2.16)

$$\left\{ \tau_{\max} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} , \sigma_n = \frac{\sigma_x + \sigma_y}{2} , c: 粘着力 , \phi: せん断抵抗角 \right\}$$

また、塑性ひずみポテンシャル関数には、偏差応力と塑性偏差ひずみ増分の共軸性を仮 定し、

(せん断降伏時)
$$g = \tau_{\max} - \sigma_n \sin \psi - A = 0$$
 (2.17)

(関連流れ則を適用)

(2.18)

(引張り降伏時)
$$g = f = \tau_{max} - \sigma_n = 0$$
 (関連流れ則を適用) (2.18)
 ψ :ダイレイタンシー角(膨張が正) , A :降伏面上で応力点を一致させるための定数

を採用すれば、降伏規準のコンシステンシー条件により次の応力~ひずみマトリクス[D^{ep}]

が得られる。

1

 $1 - \sin \phi$

図 2.3.7 せん断/引張り複合降伏規準

図 2.3.8 平面ひずみ圧縮試験の応力~ひずみ関係

式(2.17)のダイレイタンシー角wは、平面ひずみ圧縮試験の破壊時におけるひずみ増分比 から次式

 σ_n

$$\sin \psi = -\frac{\Delta \varepsilon_1^p + \Delta \varepsilon_3^p}{\Delta \varepsilon_1^p - \Delta \varepsilon_3^p} = -\frac{\Delta \varepsilon_v^p}{\Delta \gamma_{max}^p}$$
(2.20)
$$\Delta \varepsilon_1^p, \Delta \varepsilon_3^p : 平面ひずみ圧縮試験の塑性軸ひずみ増分$$

$$\Delta \varepsilon_v^p : 塑性体積ひずみ増分$$

$$\Delta \gamma_{max}^p : 塑性最大せん断ひずみ増分$$

 $\varepsilon_1 + \varepsilon_3$

で定義されるパラメータで、龍岡⁵⁾によると砂のψはせん断抵抗角φより25~30度程小さく、 5~15 度の範囲にあるとされている。また、式(2.19)の弾塑性マトリクスは、田中⁶⁾が提案 した3次元応力状態に対するMC/DPモデルを2次元平面ひずみ場に展開したものであるが、 引張り降伏が考慮されていることから、改良 MC/DP モデルと呼ぶことができる。

2.3.4 体積非圧縮 FEM 要素のロッキング

ダイレイタンシー角がゼロの弾完全塑性要素は塑性変形時に体積変化を起こすことがで きず、長方形要素の場合、許容される変形モードは図2.3.9に示す4モードに限られる。 また、ポアソン比が 0.5 に近い弾性要素も同じである。さらに、要素の剛性マトリクス算出 に際して従来の 2×2 点 Gauss-Legendre 積分を適用すると、4 つの積分点で非体積圧縮拘束 $(\varepsilon_x + \varepsilon_y = 0)$ を受けるから2個の砂時計モード変形も拘束されてしまうことになる。このよ うな過拘束によって変形が抑制される現象をロッキングというが、非体積圧縮条件に起因 することから、体積変形ロッキングと呼ばれている。同様の現象は、梁の曲げ変形問題に 長方形一次要素を用いた場合にも表れ、4 積分点のせん断ひずみが過拘束を与えることから せん断ロッキングと呼ばれている。このような過拘束を避けるには、ひずみの評価に際し て、砂時計モードの寄与を省けば良いことになり、要素中心でひずみを評価する次数低減 積分法(1点積分法)が考案された。ただし、1点積分法では砂時計モード変形の発生に対 して要素が剛性を発揮し得ないことになり、砂時計モード不安定を生じる可能性がある。 これに対し、現在提案されている手法は①抗砂時計モード剛性を付加する³⁾、②選択的に 次数低減積分を採用する⁴⁾の2法で、①の場合は、以下で定式化される。

要素内のひずみ {ε}は次式で表される。

$$\{\varepsilon\} = \{\varepsilon_c\} + \{\varepsilon_h\} = [B]\{u\} , \{\varepsilon_c\} = [B_c]\{u\}$$

$$\begin{cases} [B] : ひずみマトリクス (座標x, yの関数) \\ [B_c] : 要素中心で評価したひずみマトリクス \\ \{u\} : 節点変位 \end{cases}$$

$$(2. 21)$$

ここに、 $\{\epsilon_c\}$ は要素中心のひずみ、 $\{\epsilon_h\}$ は $\{\epsilon_c\}$ からの相対ひずみである。このひずみ $\{\epsilon_h\}$ は 砂時計モード変形に対応するひずみなので、これに対する応力 $\{\sigma_h\}$ を梁の曲げ理論からの アナロジーにより次式で表す。

$$\{\sigma_h\} = [D_h]\{\varepsilon_h\} , \quad [D_h] = \begin{bmatrix} D_{hx} & 0 & 0\\ 0 & D_{hy} & 0\\ 0 & 0 & 0 \end{bmatrix}$$
(2.22)

上式の D_{hx} は本来の応力~ひずみ関係を $\sigma_y = \tau_{xy} = 0$ の条件で縮約した剛性係数で、弾性の応力~ひずみマトリクスの場合、次式で与えられる。(液状化層の場合、G は低下剛性 G_1)

$$D_{hx} = D_{hy} = \frac{2G}{1-\nu}$$
 G: せん断剛性 , ν : ポアソン比 (2.23)

式(2.21)と式(2.22)を用いれば、抗砂時計剛性マトリクス[K_h]は次式で与えられる。

$$[K_{h}] = \int_{V} \left([B]^{T} - [B_{c}]^{T} \right) [D_{h}] ([B] - [B_{c}]) dV_{E}$$
(2.24)

上式の積分は Gauss-Legendre の 2×2 点積分で実施することになるが、得られる付加剛性 マトリクスは長方形弾性要素の場合、Flanagan³⁾らによるものと同一となり、体積ロッキン グとせん断ロッキングの双方を緩和することができる。

図 2.3.9 体積非圧縮変形モード

図 2.3.10 Gauss 積分点

<参考文献>

- 日本機械学会:計算力学ハンドブック-Ⅱ差分法・有限体積法 熱流体編、pp. 25-26, 2006.
- 2) Ishihara, k. and Yoshimine, M. : Evaluation of Settlements in sand deposits following liquefaction during Earthquakes, Soils and Foundations, Vol. 32, No.1, pp. 173-188, 1992.
- Flanagan, D.P. and Belytschko, T. : A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, International Journal for Numerical Methods in Engineering, Vol. 17, pp.679-706, 1981.
- 大矢陽介,吉田望:ロッキングと砂時計不安定を避ける有効応力解析法の定式化,構造 工学論文集, Vol. 54B, pp.45-50,2008.
- 5) 龍岡文夫:わかりやすい土質力学原論, 土質工学会, p.1-44, 1987.
- 6) 田中忠次:わかりやすい土質力学原論,土質工学会, p.203-243, 1987.

第3章 計算例1:締固め工法による対策(その1)

3.1 設計手順

図 3.1.1 に締固め工法の設計手順を示す。代表的な締固め工法としてサンドコンパクションパイル工法(SCP工法)を例に設計することとし、改良仕様は、"方法D"に従って設定する。

対策工の初期諸元(改良幅、改良深度、改良率)は、図中に示す設定方法にて設定し、 この対策工を入れた断面においてレベル2地震動に対する耐震性能照査(有限要素法によ る自重変形解析)を実施する。その結果、耐震性能を満足しない場合には、改良幅を広げ る等により対策工諸元を見直し、耐震性能を満足する諸元を設定する。具体的には、改良 幅を広げる、改良率を増加させる、もしくは改良深度を深くする(レベル2地震動で液状 化する層が下層に存在する場合)ことで最適諸元を求めることになるが、これらは現場条 件や施工条件などを総合的に判断して設定することが必要である。

次に、対策工実施により堤防の浸透安全性が有意に低下しないことを照査する。浸透安 全性が有意に低下する場合には、ドレーン工等の補助工法を検討したり、場合によっては 対策工法を変更する必要もある。

※対策工初期	諸元の	の設定方法
改良幅	:	3 列以上
改良深度	:	対策工諸元設定用震度に対する液状化層下端
改良率	:	対策工諸元設定用震度で FL>1.1 となる改良率

3.2 設計条件

3.2.1 地盤条件

(1) 基本諸元

図 3.2.1 に耐震性能照査の対象とする堤体および地盤構造を示す。表 3.2.1 に設定した 各層の地盤定数を示す。

液状化層が一層で比較的薄いモデルである。

図 3.2.1 耐震性能照査の対象とする堤体および地盤構造

土層区分	土層厚 (m)	層区分	深度 (m)	N値	[平均値] N値	土の単位 体積重量 γ(kN/m ³)	[平均値] 細粒分 含有率 <i>Fc</i> (%)	土の 粘着力 c (kN/m ²)	土の 内部摩擦角 <i>φ</i> (゜)	透水係数 <i>k</i> (m/sec)
堤体	5.0	砂質土	-	-	5.0	18.0	35	0	30	$1.0 imes 10^{-6}$
沖積砂質土 As	5.0	砂質土 砂質土 砂質土	1.3 2.3 3.3 4.3	2 4 6 8	5.0	18.0	16	0	30	1.0×10^{-5}
洪積砂質土 Ds	3.0	<u>砂質土</u> 砂質土 砂質土	5.3 6.3 7.3	37 46 45	42.7	20.0	3	0	40	1.0×10^{-5}
洪積礫質土 Dg	-	<u>礫質土</u> 礫質土	8.3 9.3	50 50	50.0	21.0	-	0	40	1.0×10^{-4}

表 3.2.1 地盤条件

(1) 地盤種別の判定

指針に基づき地盤種別の判定を行った。表 3.2.2 に地盤種別の判定結果を示す。洪積礫 質土層 Dg を耐震性能照査上の基盤面とし地盤の特性値 T_G を算出すると、 $T_G=0.21$ (s)となる ため、本地盤は II 種地盤と判定された。

地層区分	地層厚 Hi (m)		4Hi/Vsi (s)	備考
沖積砂質土 As	5.0	120	0.167	各層のせん
洪積砂質土 Ds	3.0	280	0.043	 前仮速度 は、PS検層 にて確認さ れていろ
洪積礫質土 Dg	-	300	-	
		4Σ Hi/Vsi=	0.210	(Ⅱ種地盤)

表 3.2.2 耐震性能照査上の地盤種別の判定

3.2.2 入力地震動条件

入力地震動は、指針に基づき以下のように設定した。

1) 対策工諸元設定用震度

 $k_h = C_Z \times k_{G0}$

- kh : 対策工諸元設定用水平震度 (0.15)
- kG0 : 地盤種別に応じた標準水平震度(Ⅱ種地盤:0.15)
- Cz : 地域別補正係数(地域区分A2:1.0)

2) レベル2地震動

 $k_{hgL} = C_Z \times k_{hgL0}$

- khgL : 液状化の判定に用いる地盤面の水平震度 (レベル 2-1 地震動: 0.45、レベル 2-2 地震動: 0.70)
- khgLo: 液状化の判定に用いる地盤面の水平震度の標準値

(Ⅱ種地盤、レベル 2-1 地震動:0.45、レベル 2-2 地震動:0.70)

Cz : 地域別補正係数(地域区分A2:1.0)

地震重	動	地盤 種別	k _{G0} k _{hgL0}	地域 区分	Cz	k _h k _{hgL}
対策工: 設定用意		015			0.15	
レベル2	L2-1	Ⅱ種	0.45	A2	1.0	0.45
地震動	L2-2		0.70			0.70

表 3.2.3 入力地震動

3.2.3 液状化判定

指針に基づき液状化判定を実施した。図 3.2.2、表 3.2.4、表 3.2.5 に対策工諸元設定 用震度およびレベル 2 地震動に対する液状化判定結果を示す。これより、沖積砂質土 As が 対策工諸元設定用震度およびレベル 2 地震動に対する液状化層となる。

図 3.2.2 液状化に対する抵抗率 FLの深度方向分布

										対策工諸5	记設定用震度	14.57
十層区分	土層厚	層区分	深度	N 値	層平均	土の単位 体積重量	治 哲 治 樹	繰返し三軸 歯度比	地震時	動的 ^{社人断}	液状化に 対する	
	(II)		(II)	1	N值	$\gamma(kN/m^3)$	FC (%)	RL	応力比	通道比	抵抗率	判定結果
									L	R	F_{L}	
		砂質土	1.3	2		18	25	0.191	0.169	0.190	1.12	準液状化層
沖積砂質土	2	砂質土	2.3	4	2	18	18	0.215	0.211	0.214	1.01	準液状化層
\mathbf{As}	0.0	砂質土	3.3	9	0.0	18	12	0.224	0.233	0.223	0.95	完全液状化層
		砂質土	4.3	8		18	8	0.236	0.245	0.236	0.96	完全液状化層
十一週小四季十个		砂質土	5.3	37		20	4				-	
法惧吵具工	3.0	砂質土	6.3	46	42.7	20	2				ı	
ŝ		砂質土	7.3	45		20	2					
洪積礫質土		礫質土	8.3	50	50.05	21	-	-			-	
Dg		礫質土	9.3	50	0.00	21				ı		

(対策工諸元設定用震度)
液状化判定結果
表 3.2.4

表 3.2.5 液状化判定結果(レベル2地震動)

	十 四 四 一 千				沖積砂質土	\mathbf{As}		小牛者が広子	供収が具工	ŝ	洪積礫質土	Dg
·III) 圖		Æ	۳ ۳	<u>0.0</u>	<u> </u>		3.0 割 割 割 約 の の の の の の の の の の の の の の の の		() () () () () () () () () () () () () (
	令凶國			沙質土	ッ質土	沙質土	少質 土	ッ質土	う 質 土	9 質土	樂質土	業質士
	深度	(m)		1.3	2.3	3.3	4.3	5.3	6.3	7.3	8.3	9.3
	N 储	<u>비</u>		2	4	9	8	37	46	45	50	50
層平均 N值			5 0	0.0			42.7		20.02	0.00		
	土の単位 体積重量	$\gamma(kN/m^3)$		18	18	18	18	20	20	20	21	21
	御 御	FC(%)		52	18	12	8	4	2	2	-	•
	繰返し三軸 路座せ	RL RL		0.191	0.215	0.224	0.236	-			-	
2	地震時せる。	同ちた	Г	0.506	0.633	0.698	0.734					
ベル2-1地震重	動的 ²⁴⁻² 断	頃の第二世	R	0.190	0.214	0.223	0.236				,	•
f	液状化に	とう いましん しんしん しんしん しんしん あんしん あんしん あんしん あんしん しんしん しん	F_{L}	0.37	0.33	0.31	0.32				-	
	地震時ます。	同ち期	L	0.787	0.985	1.086	1.142					
イベイ	動的 ** / #f	国际比	R	0.247	0.296	0.314	0.342					
2-2地震動	液状化に	とう いまた あん いっし おう いっし おう いっし おう しょう しん しょう	$F_{ m L}$	0.31	0.30	0.28	0.29	I		ı		
		判定結果		完全液状化層	完全液状化層	完全液状化層	完全液状化層			·		•

3.2.4 照査基準

レベル2地震動に対して、地震後の堤防高さが以下の外水位を下回らないことを照査した。

照查外水位 : EL.+2.5m

3.2.5 対策工諸元設定上の制約条件

図 3.2.3 に対策工諸元設定上の制約条件を示す。実際の検討断面では現地状況や施工条件等から様々な制約条件が設定される。本計算モデルでは、図に示すように、対策工は、 堤防のり尻より 5m の位置から外側に実施することを条件として諸元を設定する。

図 3.2.3 対策工諸元設定上の制約条件

3.2.6 浸透安全性の評価に用いる外力

対策後に浸透安全性が現況に比べ有意に低下しないことを照査するために、「河川堤防の 構造検討の手引き」に準じて外力を設定する。

ここでは、降雨、洪水の外力を以下の通りとした。

図 3.2.4 設定した降雨、洪水波形

3.3 現況の照査

現況堤防のレベル2地震動に対する耐震性能照査は、有限要素法による自重変形解析(静 的照査法)により実施した。

なお、解析モデルの右側地表に浮力補正バネを設定したのは、低水河岸の過剰な変形を 抑制するためであり、天端沈下量に与える影響はほとんどない。水面に接している液状化 層の要素の有効応力は極めて小さく、そこにのり尻のような形状で大きなせん断力が作用 すると、過剰な変形が生じる場合がある。バネはバネ下面の地盤の一要素幅に単位体積重 量を乗じて設定した。

(1) 解析モデル

図 3.3.1 に解析モデルおよび設定パラメータを示す。また、解析上の地下水位および解 析モデルの境界条件は以下の通り設定した。

[地下水位]

先に示した地下水位から一律 0.5m 上側に設定することとし、EL.-0.5m とする。

[境界条件]

側方境界 : 付加地盤(左右両側共 50m)および鉛直ローラ(X 固定)底面境界 : 固定(X、Y 固定)

_	·		\sim		
<i>t</i> Ccn	-		2.(-	
乘沙土脾	基準鉛直 基準鉛直 有効応力 o vo' (kN/m ²)	-	SL	-	-
	初期水平 土圧係数 K	0.5	0.5	0.5	0.5
	引 張強度 qt (kN/m ²)	0	0	0	0
	ダイレイ タンシー角 (°)	10.0	10.0	15.0	I
	相対密度 Dr		50	'	ı
	ポアソン比	0.333	0.333	0.333	0.333
	せん断剛性 G (kN/m ²)	5250	5250	44850	52500
	繰返し 三軸強度比 RL	-	0.216	-	
	透水係数 k (m/sec)	$1.0 imes 10^{-6}$	$1.0 imes 10^{-5}$	$1.0 imes 10^{-5}$	$1.0 imes 10^{-4}$
	土の 内部摩擦角 (°)	30	30	40	40
	土の 粘着力 c (kN/m ²)	0	0	0	0
	土の単位 体積重量 γ(kN/m ³)	18.0	18.0	20.0	21.0
	N値	5.0	5.0	42.7	50.0
	非線形タイプ	MC/DP 弾塑性モデル	MC/DP 弾塑性モデル	MC/DP 弾塑性モデル	線形弾性
	変形特性	連成要素	液状化要素	連成要素	連成要素
	土層区分	堤体B	沖積砂質土 As	洪積砂質土 Ds	洪積礫質土 Dg

※ダイレイタンシー角 ψ は、ψ= φ -20(15°を上限値)で設定。

図 3.3.1 解析モデル

(2) 耐震性能照查結果

図 3.3.2、図 3.3.3 に現況堤防のレベル 2 地震動に対する耐震性能照査結果を示す。これより、レベル 2-1 地震動およびレベル 2-2 地震動ともに、地震後の堤防高さが照査外水位を下回るため、対策工の検討が必要となる。

[照査結果]

レベル 2-1 地震動	:	(地震後堤防高さ)EL.+2.16m	<	(照查外水位)EL.+2.50m	(NG)
レベル 2-2 地震動	:	(地震後堤防高さ)EL.+1.95m	<	(照查外水位)EL.+2.50m	(NG)

(b)液状化に対する抵抗率 FL分布

図 3.3.2 レベル 2-1 地震動に対する照査結果

図 3.3.3 レベル 2-2 地震動に対する照査結果

3.4 対策後の照査

3.4.1 対策工諸元の設定

- (1) 改良仕様の設定
- 1) 改良率

SCP 工法の最小置換率(6%程度)に相当する砂杭の打設間隔 2.5m(砂杭径 ¢700mm、 正方形配置)の仕様で、改良後の杭間地盤の諸元を方法 D によって求めると、表 3.4.1 の通りとなり、F_L> 1.1 を満足する結果となった。

表 3.4.1 置換率 6.1% (砂杭径 φ 700mm、打設間隔 2.5m) における杭間地盤の諸元

土層名	深度	N値	FC	Rc	$D_{\rm r1}$	改良後	$R_{\rm L}$	L	$F_{ m L}$	N_1
	(m)		(%)		(%)	N值				
	1.3	2	25.0	0.407	63.86	3.8	0.238	0.169	1.41	5.44
Åc	2.3	4	18.0	0.473	70.63	6.7	0.265	0.211	1.26	9.54
As	3.3	6	12.0	0.554	76.13	10.0	0.281	0.233	1.21	14.1
	4.3	8	8.0	0.635	77.79	13.3	0.305	0.245	1.25	18.8

(2) 改良範囲の設定

1) 改良深度

改良深度の下端は、諸元設計用震度に対する液状化下端の EL.-5.0m とした。

2) 改良幅(打設列数)

最小の打設列数と規定された砂杭3列より、改良幅は5m(最外縁の杭芯間)とした。

図 3.4.1 改良幅

3.4.2 耐震性能照查

有限要素法による自重変形解析(静的照査法)により、3.4.1によって設定した対策工 を施した堤防の、レベル2地震動に対する耐震性能照査を行った。耐震性能を満足しな い場合には、対策工諸元を見直し、再度照査を行い、耐震性能を満たす対策工諸元を決 定する。

(1) 改良地盤の入力パラメータ

対策工諸元設定において決定した改良地盤の入力パラメータを表 3.4.2 に示す。原地盤と堤防の設定パラメータは 3.2 及び 3.3 と同様である。

項目	As層	備考
$++$ (新聞) 世 仮 物 C ($hN(m^2)$)	8880	平均N値より算出
	0000	G=2800 · $N/(2(1+v))$
ポアソン比 v	0.333	
湿潤単位体積重量 yt (kN/m ³)	18.0	
粘着力 C (kN/m ²)	0.00	
せん断抵抗角 ¢ (°)	32.4	道路橋示方書式
ダイレイタンシー角 y (°)	12.4	推奨値(<i>ϕ</i> -20、max15)
引張り強度 q_t (kN/m^2)	0.00	
相対密度 D _r (%)	72.1	平均值
液状化強度比 RL	0.272	平均值
透水係数 k (m/sec)	水平:1.00×10 ⁻⁵	
	鉛直:1.00×10 ⁻⁴	

表 3.4.2 静的照査法に入力する改良地盤のパラメータ(打設間隔 正方形配置 2.5m)

(2) 耐震性能照査による対策工の検討

対策工をモデル化した堤防断面において変形解析を行った結果、地震後堤防高さが照 査外水位を下回ったため、照査外水位以上となるよう対策諸元を再度設定した。対策工 諸元設定の流れと決定した諸元を**表 3.4.3**に示す。

ただし、 $F_L > 1.1$ を目標とした打設間隔 正方形配置 2.5m では、改良幅を広げても許 容沈下量以下となる対策工諸元を得ることができなかったため、最終的に $F_L > 1.3$ とな る打設間隔 正方形配置 2.1m で改良幅を求めた結果を採用断面とした。

表 3.4.3 対策工諸元設定の流れと決定諸元

2-i 対策工諸元設定断面による変形解析結果

対策工諸元設定によって決定した断面について変形解析を行った結果、表 3.4.4 に示 す通り沈下後堤防高さが照査外水位を満足しない結果となった。

表 3.4.4 対策工諸元設定断面による変形照査結果
②-ii 対策工諸元の見直し

最終的に採用断面となった打設間隔 正方形配置 2.1m(目標 F_L>1.3)の改良地盤の諸 元を表 3.4.5、静的照査法の入力パラメータを表 3.4.6に示す。

土層名	深度	N值	FC	Rc	$D_{\rm r1}$	改良後	R _L	L	$F_{ m L}$	N_1
	(m)		(%)		(%)	N值				
	1.30	2	25.0	0.407	67.1	4.70	0.257	0.169	1.526	6.65
A c	2.30	4	18.0	0.473	74.6	8.00	0.290	0.211	1.371	11.4
AS	3.30	6	12.0	0.554	81.1	11.9	0.312	0.233	1.342	16.8
	4.30	8	8.00	0.635	83.9	15.9	0.370	0.245	1.511	22.5

表 3.4.5 改良後の地盤諸元(打設間隔 正方形配置 2.1m)

表 3.4.6 静的照査法に入力する改良地盤のパラメータ(打設間隔 正方形配置 2.1m)

項目	As層	備考
H/ 断圖 此	10600	平均N値より算出
でん 例 阿泊 生 休 致 G (KIN/ III)	10000	G=2800 · $N/(2(1+v))$
ポアソン比 v	0.333	
湿潤単位体積重量 γ _t (kN/m ³)	18.0	
粘着力 C (kN/m ²)	0.00	
せん断抵抗角 ϕ (°)	33.3	道路橋示方書式
ダイレタンシー角 ψ (°)	13.3	推奨値(<i>ϕ</i> -20、max15)
引張り強度 q_t (kN/m ²)	0.00	
相対密度 D _r (%)	76.7	平均值
液状化強度比 RL	0.307	平均值
透水係数 k (m/sec)	水平:1.00×10 ⁻⁵	
	鉛直:1.00×10-4	

耐震性能を満足した対策工諸元による変形解析の結果を表3.4.7に示す。

表 3.4.7 改良諸元見直し後の耐震性能照査結果

詳細な必要改良幅を求めるために、改良幅を変化させて変形解析を実施した。改良幅と沈下量の関係をまとめると図3.4.2の通りとなり、これより許容沈下量(堤防高さ 一照査外水位)以下となる必要改良幅4.8m が得られた。

a) レベル 2-1 地震動

b) レベル 2-2 地震動

図 3.4.2 静的照査法による改良幅と沈下量の関係

以上の結果、必要改良幅を満足する砂杭配置は下記の通りとなった。

図 3.4.3 砂杭配置断面

砂杭径 : Ø700mm
改良下端 : EL.-5.0m
打設ピッチ : 正方形配置 2.1m
改良率 : a_s=8.7%

図 3.4.4 砂杭配置平面詳細図

3.4.3 浸透安全性照查

前項までに決定した対策工を施した断面に対して、「河川堤防の構造検討の手引き」に準 じた検討を行い、液状化対策工によって堤防の浸透安全性が現況に比べ有意に低下しない ことを照査した。

(1) 地盤モデルとパラメータ

地盤モデルとパラメータは3.2.1に示した通りである。3.2.1以外のパラメータは「河 川堤防の構造検討の手引き」に準拠した。

なお,改良地盤の透水係数は、水平方向には離散配置された砂杭であることから、 鉛直方向には砂杭の材料に応じた透水係数 1.0×10⁻⁴(m/s)を設定し、水平方向には周辺地 盤相当の 1.0×10⁻⁵(m/s)を設定した。

浸透流解析に用いるメッシュは、変形解析のメッシュを準用した。

(2) 外力の設定

詳細に用いる降雨、洪水の外力は3.2.6に示した通りである。

(3) 解析結果

現況解析の結果と対策後の結果を下表に示す。

対策後の浸透安全性(局所動水勾配、円弧すべり安全率)は、全ての項目において現 況を上回った。

松計ケーフ	局所動	水勾配	円弧すべ	り安全率
使的7 — 7	鉛直 iv	水平 ih	川表 Fs	川裏 Fs
現況	0.447	0.524	0.805	0.748
締固め	0.163	0.485	0.847	0.779

表 3.4.8 浸透安全性の照査結果一覧

-33-

第4章 計算例2:締固め工法による対策(その2)

4.1 設計手順

図 4.1.1 に締固め工法の設計手順を示す。代表的な締固め工法としてサンドコンパクションパイル工法(SCP 工法)を例に設計することとし、改良仕様は、"方法 D"に従って設定する。

対策工の初期諸元(改良幅、改良深度、改良率)は、図中に示す設定方法にて設定し、 この対策工を入れた断面においてレベル2地震動に対する耐震性能照査(有限要素法によ る自重変形解析)を実施する。その結果、耐震性能を満足しない場合には、改良幅を広げ る等により対策工諸元を見直し、耐震性能を満足する諸元を設定する。具体的には、改良 幅を広げる、改良率を増加させる、もしくは改良深度を深くする(レベル2地震動で液状 化する層が下層に存在する場合)ことで最適諸元を求めることになるが、これらは現場条 件や施工条件などを総合的に判断して設定することが必要である。

次に、対策工実施により堤防の浸透安全性が有意に低下しないことを照査する。浸透安 全性が有意に低下する場合には、ドレーン工等の補助工法を検討したり、場合によっては 対策工法を変更する必要もある。

※対策工初期	諸元(の設定方法
改良幅	:	3 列以上
改良深度	:	対策工諸元設定用震度に対する液状化層下端
改良率	:	対策工諸元設定用震度で FL>1.1 となる改良率

図 4.1.1 締固め工法の設計手順

4.2 設計条件

4.2.1 地盤条件

(1) 基本諸元

図 4.2.1 に耐震性能照査の対象とする堤体および地盤構造を示す。表 4.2.1 に設定した 各層の地盤定数を示す。

液状化層が二層で比較的厚いモデルである。

[堤体構	冓造]	堤体高	:	5.0m
		天端幅	:	5.0m
		のり面勾配	:	1:2.0
[水	位]	地下水位	:	G.L1.5m (EL1.5m)
		外水位	:	EL.+2.5m

図 4.2.1 耐震性能照査対象とする堤体および地盤構造

土層区分	土層厚 (m)	層区分	深度 (m)	N 値	[平均値] N値	土の単位 体積重量 γ(kN/m ³)	[平均値] 細粒分 含有率 Fc(%)	土の 粘着力 c (kN/m ²)	土の 内部摩擦角 <i>φ</i> (°)	透水係数 <i>k</i> (m/sec)
堤体	5	砂質土	-	-	5.0	18.0	35	0	30	$1.0 imes 10^{-6}$
沖積砂質土 As1	5.0	砂質土 砂質土 砂質土	1.3 2.3 3.3 4.3	2 4 6 4	4.0	18.0	16	0	30	$1.0 imes 10^{-5}$
沖積砂質土 As2	5.0	 砂質土 砂質土 砂質土 砂質土 砂質土 砂質土 	5.3 6.3 7.3 8.3 9.3	7 9 9 10 7	8.4	19.0	9	0	30	1.0×10^{-5}
	4.0	<u>粘性土</u> 粘性土 粘性土 粘性土	10.3 11.3 12.3 13.3	3 2 2 1				40	0	
沖積粘性土 Ac	4.0	<u>粘性土</u> 粘性土 粘性土 粘性土	14.3 15.3 16.3 17.3	1 2 2 2 2	1.7	17.0	87	50	0	$1.0 imes 10^{-8}$
	5.0	<u>粘性土</u> <u>粘性土</u> <u>粘性土</u> <u>粘性土</u> 粘性土	18.3 19.3 20.3 21.3 22.3	1 2 1 1 2				65	0	
洪積粘性土 Dc	-	<u>粘性土</u> 粘性土 粘性土	23.3 24.3 25.3	20 25 25	25.0	17.0	89	100	0	$1.0 imes 10^{-8}$

表 4.2.1 地盤条件

(2) 地盤種別の判定

指針に基づき地盤種別の判定を行った。表 4.2.2 に地盤種別の判定結果を示す。洪積粘性土 Dc を耐震性能照査上の基盤面とし地盤の特性値 T_G を算出すると、 $T_G=0.725(s)$ となるため、本地盤はIII種地盤と判定された。

地層区分	地層厚 Hi (m)	地層の 平均せん断 波速度 Vsi(m/s)	4Hi/Vsi (s)	備考
沖積砂質土 As1	5.0	120	0.167	
沖積砂質土 As2	5.0	160	0.125	各層のせん 断波速度 は、PS検層
沖積粘性土 Ac	13.0	120	0.433	にて確認さ れている
洪積粘性土 Dc		300	-	
		4Σ Hi/Vsi=	0.725	(Ⅲ種地盤)

表 4.2.2 耐震性能照査上の地盤種別の判定

4.2.2 入力地震動条件

入力地震動は、指針に基づき以下のように設定した。

1) 対策工諸元設定用震度

 $k_h = C_Z \times k_{G0}$

kh : 対策工諸元設定用水平震度(0.18)

- kG0 : 地盤種別に応じた標準水平震度(Ⅲ種地盤:0.18)
- Cz : 地域別補正係数(地域区分 A2:1.0)

2) レベル2地震動

 $k_{hgL} = C_Z \times k_{hgL0}$

khgL : 液状化の判定に用いる地盤面の水平震度

(レベル 2-1 地震動:0.40、レベル 2-2 地震動:0.60)

khgL0: 液状化の判定に用いる地盤面の水平震度の標準値

(Ⅲ種地盤、レベル 2-1 地震動:0.40、レベル 2-2 地震動:0.60)

Cz : 地域別補正係数(地域区分A2:1.0)

地震重	助	地盤 種別	k _{G0} k _{hgL0}	地域 区分	Cz	k_h k_{hgL}
対策工語 設定用意	者元 §度		018			0.18
レベル2	L2-1	Ⅲ種	0.40	A2	1.0	0.40
地震動	L2-2		0.60			0.60

表 4.2.3 入力地震動

4.2.3 液状化判定

指針に基づき液状化判定を実施した。図 4.2.2、表 4.2.4、表 4.2.5 に対策工諸元設定 用震度およびレベル 2 地震動に対する液状化判定結果を示す。これより、沖積砂質土 As1、 As2 が対策工諸元設定用震度およびレベル 2 地震動に対する液状化層となる。

図 4.2.2 液状化に対する抵抗率 FLの深度方向分布

				D.IIIm	n.me	nm-	T.Mrs	n.me	n.me	t.me	nm-		-	-	-	1	_	-		1	-	_		_		-	Ē
中文	判定結果			完全液状化層	完全液状化層	完全液状化層	完全液状化層	完全液状化層	完全液状化層	完全液状化層	完全液状化層	-	-		-	'	-	-	-	,	-	'	'	-		'	
元設定用震度	液状化に 対する 抵抗率	$F^{\rm L}$	1	0.92	0.89	0.80	0.77	0.82	0.79	0.80	0.75		-		-		1	-	-	ı	-	1		-			
対策工諸	動的社と断度	К	1	0.199	0.219	0.213	0.214	0.230	0.224	0.228	0.213	ı	-		-	I	1	-	-	I	-	1		-		-	
	地 で かり で ま が よ	L		0.215	0.245	0.264	0.275	0.280	0.283	0.284	0.284	ı	-		-	ı	-	-	-	ı	-			-		-	
	繰返し三軸 強度比 RL		ı	0.200	0.220	0.213	0.214	0.231	0.225	0.229	0.213	ı	-			ı			-	ı	-	ı					
	維約合有率FC (%)		17	14	12	23	7	8	10	9	16	70	83	90	95	94	88	87	85	92	84	91	91	84	87	90	00
	土の単位 体積重量 _γ (kN/m ³)		18	18	18	18	19	19	19	19	19	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	ľ
	層平均 N値				4.0				8.4	-			<u>.</u>	a		•	<u>.</u>	1.7			<i>،</i>	3		·		25.0	<u> </u>
	N値		2	4	9	4	7	6	6	10	7	3	2	2	1	1	2	2	2	1	2	1	1	2	20	25	30
	深度 (m)		1.3	2.3	3.3	4.3	5.3	6.3	7.3	8.3	9.3	10.3	11.3	12.3	13.3	14.3	15.3	16.3	17.3	18.3	19.3	20.3	21.3	22.3	23.3	24.3	C 2C
	層区分	1	砂質土	砂質土	砂質土	砂質土	砂質土	砂質土	砂質土	砂質土	砂質土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	+ +++++
	土層厚 (m)			C Y	0.0				5.0					0.4	•			0.4				5.0	•			1	
	土層区分			沖積砂質土	As1			计律功所工	件俱砂真工 * *2	A82								作俱他性工	AC						十 十/1 北 十/	法慎値は上	R

表 4.2.4 液状化判定結果(対策工諸元設定用震度)

									7	ベル2-1地震重	ť.		イベント	-2-2地震動	
	国 昭 十		世影		國可払	土の単位	細粒分	繰返し三軸	地震時	動的	液状化に	地震時	動的	液状化に	
土層区分	生 「王」	層区分	(m) (m)	N値	画十20 N盾	体積重量	含有率	強度比	せん断	せん断	対する	せん断	せん断	対する	当中省
	(m)		(III)		폡 87	γ (kN/m ³)	FC(%)	$R_{ m L}$	応力比	強度比	抵抗率	応力比	強度比	抵抗率	刊化陌禾
									Г	R	F_{L}	Г	R	F_{L}	
		砂質土	1.3	2		18	17	-	1	-		1	-	-	
沖積砂質土	0.2	砂質土	2.3	4		18	14	0.200	0.479	0.199	0.41	0.718	0.265	0.36	完全液状化層
As1	0.0	砂質土	3.3	9	0.4	18	12	0.220	0.546	0.219	0.40	0.818	0.306	0.37	完全液状化層
		砂質土	4.3	4		18	23	0.213	0.586	0.213	0.36	0.879	0.293	0.33	完全液状化層
		砂質土	5.3	7		19	L	0.214	0.611	0.214	0.35	0.916	0.294	0.32	完全液状化層
计算法		砂質土	6.3	6	<u> </u>	19	∞	0.231	0.623	0.230	0.36	0.934	0.329	0.35	完全液状化層
[[1] [[1] [] [] [] [] [] [] [] [] [] [] [] [] []	5.0	砂質土	7.3	6	8.4	19	10	0.225	0.629	0.224	0.35	0.944	0.316	0.33	完全液状化層
797		砂質土	8.3	10	<u> </u>	19	9	0.229	0.631	0.228	0.36	0.947	0.326	0.34	完全液状化層
		砂質土	9.3	7		19	16	0.213	0.631	0.213	0.33	0.946	0.292	0:30	完全液状化層
		粘性土	10.3	3		17	70	-	I	-	-	1	-	-	
	01	粘性土	11.3	2	<u> </u>	17	83	-							
	0. 1	粘性土	12.3	2	1	17	06			'	,			'	'
		粘性土	13.3	1	!	17	95	-	-	-	-	-	-	,	-
		粘性土	14.3	1		17	94	-		-		1		-	
计计学工作	01	粘性土	15.3	2		17	88	-	-	-			-	-	
	1 .0	粘性土	16.3	2	1.7	17	87	-	-	-	-	-		-	-
70		粘性土	17.3	2		17	85	-	ı			ı			
		粘性土	18.3	1		17	92	-	-	-		-	-	-	-
		粘性土	19.3	2	(<u> </u>	17	28	-	-	-	-	-	-	-	-
	5.0	粘性土	20.3	1		17	91	-	1	-	-		-	-	-
		粘性土	21.3	-		17	16								
		粘性土	22.3	2		17	2	-	1						
十支寺寺		粘性土	23.3	20		17	28	-	-	-	-	-	-	-	
法慎估任于	ı	粘性土	24.3	25	25.0	17	06	'		'	'			'	'
ž		粘性土	25.3	25		17	06	-		-	-	•	-		-

表 4.2.5 液状化判定結果(レベル2地震動)

4.2.4 照査基準

レベル2地震動に対して、地震後の堤防高さが以下の外水位を下回らないことを照査する。

照查外水位 : EL.+2.5m

4.2.5 対策工諸元設定上の制約条件

図 4.2.3 に対策工諸元設定上の制約条件を示す。実際の検討断面では現地状況や施工条件等から様々な制約条件が設定される。本計算モデルでは、図に示すように、対策工は、 堤防のり尻より 5m の位置から外側に実施することを条件として諸元を設定する。

図 4.2.3 対策工諸元設定上の制約条件

4.2.6 浸透安全性の評価に用いる外力

対策後に浸透安全性が現況に比べ有意に低下しないことを照査するために、「河川堤防の 構造検討の手引き」に準じて外力を設定する。

ここでは、降雨、洪水の外力を以下の通りとした。

図 4.2.4 設定した降雨、洪水波形

4.3 現況の照査

現況堤防のレベル2地震動に対する耐震性能照査は、有限要素法による自重変形解析(静 的照査法)により実施した。

(1) 解析モデル

図 4.3.1 に解析モデルおよび設定パラメータを示す。また、解析上の地下水位および解 析モデルの境界条件は以下の通り設定した。

[地下水位]

先に示した地下水位から一律 0.5m 上側に設定することとし、EL.-1.0m とする。

[境界条件]

側方境界 : 付加地盤(左右両側共 50m)および鉛直ローラ (X 固定)底面境界 : 固定 (X、Y 固定)

解析モデル
.
<i>.</i>
4
3

*E*₀=4400N(N:N 値)として設定。 を考慮し、 ※粘性土の変形係数 Eoは、砂質土と粘性土の微小ひずみレベルでのせん断剛性の差(比率) ※ダイレイタンシー角 ψ は、ψ= φ -20(15°を上限値)で設定。

2.0

75

0.5

10.0

6

0.333

4200

0.210

 1.0×10^{-5}

30

18.0

4.0

MC/DP 弾塑性モデル

液状化要素

沖積砂質土

As1

u

σ v0' (kN/m²)

0.5

0

10.0

0.333

5250

 $1.0 imes 10^{-6}$

30

0

18.0

5.0

MC/DP 弾塑性モデル

連成要素

堤体B

基準鉛直 有効応力

初期水平 土圧係数

引張強度

ダイレイ タンシー角

> 相対密度 Dr

ポアソン比

せん断剛性 G

繰返し 三軸強度比

透水係数

土の 内部摩擦角

>

 (kN/m^2)

R

(m/sec)

\$

k

土の 粘着力 c (kN/m²)

> 土の単位 体積重量

> > N 同 記

> > 非線形タイプ

変形特性

土層区分

 $\gamma(kN/m^3)$

 \mathbb{X}

qt (kN/m²)

€ ھ

2.0

75

0.5

0

10.0

50

0.333

8820

0.222

 1.0×10^{-5}

30

C

19.0

8.4

MC/DP 弾塑性モデル

液状化要素

沖積砂質土 As2 0.5

0

0.333

41300

 1.0×10^{-8}

17.0

25.0

線形弾性

非排水変形

洪積粘性土 Dc

0.5

0

0.0

0.333

2800

 1.0×10^{-8}

0

50 65 100

17.0

1.7

MC/DP 弾塑性モデル

非排水変形

沖積粘性土

 \mathbf{Ac}

40

-43-

(2) 耐震性能照查結果

図 4.3.2、図 4.3.3 に現況堤防のレベル 2 地震動に対する耐震性能照査結果を示す。これより、レベル 2-1 地震動およびレベル 2-2 地震動ともに、地震後の堤防高さが照査外水位を下回るため、対策工の検討が必要となる。

なお、本地盤では堤防沈下量が堤防高さの75%を超えたため、堤防直下に浮力の効果を 擬似的に考慮する仮想バネを設定した。右側地表面に設定した仮想バネは、低水河岸の過 剰な変形を抑制するためのものである。仮想バネはバネ下面の地盤の一要素幅に単位体積 重量を乗じて設定した。

図 4.3.2 レベル 2-1 地震動に対する照査結果

図 4.3.3 レベル 2-2 地震動に対する照査結果

4.4 対策後の照査

4.4.1 対策工諸元の設定

- (1) 改良仕様の設定
- 1) 改良率

*F*_L>1.1 を満足するための SCP 工法の置換率を方法 D によって求めた結果、砂杭の打 設間隔 1.9m(砂杭径 Ø 700mm、正方形配置)の仕様に相当する置換率 10.6%となった。改 良後の杭間地盤の諸元は、**表 4.4.1**の通りとなる。

					-					
土層名	深度	N值	FC	Rc	$D_{\rm r1}$	改良後	$R_{\rm L}$	L	$F_{ m L}$	N_1
	(m)		(%)		(%)	N值				
	1.30	2	17.0	0.484	70.7	6.50	0.264	0.176		9.21
A c1	2.30	4	14.0	0.523	77.9	10.1	0.298	0.215	1.39	14.3
ASI	3.30	6	12.0	0.554	84.00	13.6	0.342	0.245	1.39	19.3
	4.30	4	23.0	0.424	73.9	9.00	0.300	0.264	1.14	12.7
	5.30	7	7.00	0.661	82.3	17.8	0.373	0.275	1.36	23.7
	6.30	9	8.00	0.635	87.1	20.6	0.442	0.280	1.58	25.6
As2	7.80	9	10.0	0.590	87.2	20.6	0.363	0.284	1.28	23.3
	8.30	10	6.0	0.692	85.1	24.3	0.497	0.284	1.75	26.7
	9.30	7	16.0	0.496	78.7	16.0	0.313	0.284	1.10	16.7

表 4.4.1 置換率 10.6%(砂杭径 φ700mm 打設間隔 1.9m)における杭間地盤の諸元

(2) 改良範囲の設定

1) 改良深度

改良深度の下端は、諸元設計震度の液状化範囲となる EL. -10.0m とする。

2) 改良幅(打設本数)

最小の打設列数と規定された砂杭3列より、改良幅は3.8m(最外縁の杭芯間)とする。

図 4.4.1 改良幅

4.4.2 耐震性能照查

有限要素法による自重変形解析(静的照査法)により、4.4.1によって設定した対策工 を施した堤防の、レベル2地震動に対する耐震性能照査を行った。耐震性能を満足しな い場合には、対策工諸元を見直し、再度照査を行い、耐震性能を満たす対策工諸元を決 定する。

(1) 対策工諸元

対策工諸元設定において決定した改良地盤の入力パラメータを表 4.4.2 に示す。原地盤と堤防の設定パラメータは 4.2 及び 4.3 と同様である。

項目	As1層	As2層	備考
+人將剛財係物 C (\mathbb{N} / m^2)	10200	20000	平均N値より算出
	10300	20900	$G=2800 \cdot N/(2(1+v))$
ポアソン比 v	0.333	0.333	
湿潤単位体積重量 γ _t (kN/m ³)	18.0	19.0	
粘着力 C (kN/m²)	0.00	0.00	
せん断抵抗角 ¢ (°)	33.5	36.0	道路橋示方書式
ダイレタンシー角 ψ(°)	13.5	15.0	推奨値(<i>ϕ</i> -20, max15)
引張り強度 q_t (kN/m ²)	0.00	0.00	
相対密度 Dr (%)	76.6	84.1	平均值
液状化強度比 R _L	0.301	0.398	平均值
透水係数 k (m/sec)	水平:1.00×10 ⁻⁵	水平:1.00×10 ⁻⁵	
	鉛直:1.00×10 ⁻⁴	鉛直:1.00×10-4	

表 4.4.2 静的照査法に入力する改良地盤のパラメータ(打設間隔 正方形配置 1.9m)

(2) 耐震性能照査による対策工の検討

対策工をモデル化した堤防断面において変形解析を行った結果、地震後堤防高さが照 査外水位を下回ったため、照査外水位以上となるよう対策諸元を再度設定した。対策工 諸元設定の流れと決定した諸元を表4.4.3に示す。

表 4.4.3 対策工諸元設定の流れと決定諸元

2-i 対策工諸元設定断面による変形解析結果

対策工諸元設定によって決定した断面について変形解析を行った結果、**表**4.4.4に示す 通り沈下後堤防高さが照査外水位を満足しない結果となった。

②-ii 改良諸元の見直し

改良幅を 9.0m に広げることで、表 4.4.5 に示す通り沈下後堤防高さが照査外水位を満足 する結果が得られた。

表 4.4.4 対策工諸元設定断面による変形照査結果

表 4.4.5 改良諸元見直し後の耐震性能照査結果

③決定対策工の砂杭配置

詳細な必要改良幅を求めるために、改良幅を変化させて変形解析を実施した。改良幅と沈下量の関係をまとめると図4.4.2の通りとなり、このグラフより許容沈下量(堤防高さ-照査外水位)以下となる必要改良幅8.9mが得られた。

a) レベル 2-1 地震動

b) レベル 2-2 地震動

図 4.4.2 静的照査法による改良幅と沈下量の関係

以上の結果、必要改良幅を満足する砂杭配置は下記の通りとなった。

図 4.4.3 砂杭配置断面

砂杭径:Ø700mm改良下端:EL.-10.0m打設ピッチ:正方形配置 1.9m改良率:as=10.6%

図 4.4.4 砂杭配置平面詳細図

4.4.3 浸透安全性照查

前項までに決定した対策工を入れた断面に対して、「河川堤防の構造検討の手引き」に準 じた検討を行い、液状化対策工によって現況に対して堤防の浸透安全性が有意に低下しな いことを照査した。

(1) 地盤モデルとパラメータ

地盤モデルとパラメータは4.2.1に示した通りである。4.2.1以外のパラメータは「河 川堤防の構造検討の手引き」に準拠した。

なお,改良地盤の透水係数は、水平方向には離散配置された砂杭であることから、 鉛直方向には砂杭の材料に応じた透水係数 1.0×10⁻⁴(m/s)を設定し、水平方向には周辺地 盤相当の 1.0×10⁻⁵(m/s)を設定した。

浸透流解析に用いるメッシュは、変形解析のメッシュを準用した。

(2) 外力の設定

詳細に用いる降雨、洪水の外力は4.2.6に示した通りである。

(3) 解析結果

現況解析の結果と対策後の結果を下表に示す。

対策後の浸透安全性(局所動水勾配、円弧すべり安全率)は、全ての項目において現 況を上回った。

松計ケーフ	局所動	水勾配	円弧すべ	り安全率
—————————————————————————————————————	鉛直 iv	水平 ih	川表 Fs	川裏 Fs
現 況	0.346	0.442	0.787	0.751
締固め	0.091	0.318	0.836	0.801

表4.4.6 浸透安全性の照査結果一覧

第5章 計算例3:固結工法による対策(その1)

5.1 設計手順

図 5.1.1 に固結工法の設計手順を示す。対策工の初期諸元は、ブロック状または格子状 の改良体の外的安定および内的安定計算結果より諸元を設定し、これに対してレベル2地 震動に対する耐震性能照査(有限要素法による自重変形解析)を実施する。その結果、耐 震性能を満足しない場合には、改良幅を広げる等により対策工諸元を見直し、耐震性能を 満足する諸元を設定する。具体的には、改良幅を広げる、もしくは、根入れ長を長くする ことで最適諸元を求めることになるが、これらは現場条件や施工条件などを総合的に判断 して設定することが必要である。

次に、対策工実施により堤防の浸透安全性が有意に低下しないことを照査する。浸透安 全性が有意に低下する場合には、ドレーン工等の補助工法を検討したり、場合によっては 対策工法を変更する必要もある。

図 5.1.1 固結工法の設計手順

5.2 設計条件

5.2.1 地盤条件

(1) 基本諸元

図 5.2.1 に耐震性能照査の対象とする堤体および地盤構造を示す。表 5.2.1 に設定した 各層の地盤定数を示す。

液状化層が二層で比較的厚いモデルである。

[堤体樟	構造]	堤体高	:	5.0m
		天端幅	:	5.0m
		のり面勾配	:	1:2.0
[水	位]	地下水位	:	G.L1.5m (EL1.5m)
		外水位	:	EL.+2.5m

図 5.2.1 耐震性能照査対象とする堤体および地盤構造

土層区分	土層厚 (m)	層区分	深度 (m)	N 値	[平均値] N値	土の単位 体積重量 γ(kN/m ³)	[平均値] 細粒分 含有率 Fc(%)	土の 粘着力 <i>c</i> (kN/m ²)	土の 内部摩擦角 <i>φ</i> (゜)	透水係数 <i>k</i> (m/sec)
堤体	5.0	砂質土	-	-	5.0	18.0	35	0	30	$1.0 imes 10^{-6}$
沖積砂質土 As1	5.0	砂質土 砂質土 砂質土 砂質土	1.3 2.3 3.3 4.3	2 3 5 4	3.5	18.0	16	0	30	$1.0 imes 10^{-5}$
沖積砂質土 As2	5.0	砂質土 砂質土 砂質土 砂質土 砂質土	5.3 6.3 7.3 8.3 9.3	12 18 14 21 15	16.0	19.0	13	0	35	1.0×10^{-5}
沖積粘性土	5.0	<u>粘性土</u> <u>粘性土</u> <u>粘性土</u> <u>粘性土</u> <u>粘性土</u>	10.3 11.3 12.3 13.3 14.3	8 4 1 2 2	24	17.0	74	45	0	1.0 × 10 ⁻⁸
Ac	5.0	<u>粘性土</u> <u>粘性土</u> <u>粘性土</u> <u>粘性土</u>	15.3 16.3 17.3 18.3 19.3	3 2 3 2 3 2 8	2.4	17.0	/4	55	0	1.0 × 10
洪積礫質土 Dg	-	<u>礫質土</u> 礫質土 礫質土	20.3 21.3 22.3	38 50 50	50.0	21.0	-	-	40	1.0×10^{-4}

表 5.2.1 地盤条件

(2) 地盤種別の判定

指針に基づき地盤種別の判定を行った。表 5.2.2 に地盤種別の判定結果を示す。洪積礫 質土層 Dg を耐震性能照査上の基盤面とし地盤の特性値 T_G を算出すると、 $T_G=0.605(s)$ とな るため、本地盤はIII種地盤と判定された。

地層区分	地層厚 Hi (m)	地層の 平均せん断 波速度 Vsi(m/s)	4Hi/Vsi (s)	備考
沖積砂質土 As1	5.0	120	0.167	
沖積砂質土 As2	5.0	190	0.105	各層のせん 断波速度 は、 PS 検層
沖積粘性土 Ac	10.0	120	0.333	にて確認さ れている
洪積礫質土 Dg	-	300		
		4Σ Hi/Vsi=	0.605	(Ⅲ種地盤)

表 5.2.2 耐震性能照査上の地盤種別の判定

5.2.2 入力地震動条件

入力地震動は、指針に基づき以下のように設定した。

1) 対策工諸元設定用震度

 $k_h = C_Z \times k_{G0}$

- kh : 対策工諸元設定用水平震度(0.18)
- kG0 : 地盤種別に応じた標準水平震度(Ⅲ種地盤:0.18)
- Cz : 地域別補正係数(地域区分 A2:1.0)

2) レベル2地震動

 $k_{hgL} = C_Z \times k_{hgL0}$

- k_{hgL}: 液状化の判定に用いる地盤面の水平震度 (レベル 2-1 地震動: 0.40、レベル 2-2 地震動: 0.60)
- khgLo: 液状化の判定に用いる地盤面の水平震度の標準値

(Ⅲ種地盤、レベル 2-1 地震動:0.40、レベル 2-2 地震動:0.60)

Cz : 地域別補正係数(地域区分A2:1.0)

地震重	勆	地盤 種別	k _{G0} k _{hgL0}	地域 区分	Cz	k_h k_{hgL}
対策工記 設定用寫	者元 §度		018			0.18
レベル2	L2-1	Ⅲ種	0.40	A2	1.0	0.40
地震動	L2-2		0.60			0.60

表 5.2.3 入力地震動

5.2.3 液状化判定

指針に基づき液状化判定を実施した。図 5.2.2、表 5.2.4、表 5.2.5 に対策工諸元設定 用震度およびレベル 2 地震動に対する液状化判定結果を示す。これより、沖積砂質土 As1、 As2 が対策工諸元設定用震度およびレベル 2 地震動に対する液状化層となる。

図 5.2.2 液状化に対する抵抗率 FLの深度方向分布

										対策工諸	元設定用震度	14.0
	国 西 十		世影		国际	土の単位	細粒分	繰返し三軸	地震時	動的	液状化に	
土層区分	生肥了	層区分	送	N値	信十岁 NI店	体積重量	含有率	強度比	せん断	せん断	対する	H toto
	(III)		(III)		司II.N	γ (kN/m ³)	FC (%)	$R_{\rm L}$	応力比	強度比	抵抗率	刊.后柏.朱
									L	R	F_{L}	
		砂質土	1.3	2		18	22	I	ı	I	ı	,
沖積砂質土	0.4	砂質土	2.3	3	2 0	18	14	0.181	0.215	0.180	0.83	完全液状化層
$A_{S}1$	0.0	砂質土	3.3	5	C.C	18	12	0.205	0.245	0.204	0.83	完全液状化層
		砂質土	4.3	4		18	21	0.208	0.264	0.208	0.78	完全液状化層
		砂質土	5.3	12		19	17	0.311	0.275	0.310	1.12	準液状化層
计载导码		砂質土	6.3	18		19	5	0.343	0.280	0.342	1.22	準液状化層
作頃が見上	5.0	砂質土	7.3	14	16.0	19	15	0.302	0.283	0.301	1.06	準液状化層
A82		砂質土	8.3	21		19	8	0.358	0.284	0.357	1.25	準液状化層
		砂質土	9.3	15		19	21	0.339	0.284	0.339	1.19	準液状化層
		粘性土	10.3	8		17	09	I		1	1	,
		粘性土	11.3	4		17	72					
		粘性土	12.3	1		17	85	-	-			-
		粘性土	13.3	2		17	80	-	-	1		
沖積粘性土	001	粘性土	14.3	2	Ċ	17	73	-	1	1		
Ac	0.01	粘性土	15.3	3	4. 1	17	73	-	'	'		
		粘性土	16.3	2		17	80	-	'	1	-	
		粘性土	17.3	3		17	75		-		-	-
		粘性土	18.3	2		17	81		'		-	
		粘性土	19.3	8		17	65	-	-	-	-	-
十翅郷肆州		礫質土	20.3	38		21	40		-			'
法俱练具上 D.	,	礫質土	21.3	50	50.0	21	15		'		-	
Dg		礫質土	22.3	50		21	10	-		1		

表 5.2.4 液状化判定結果(対策工諸元設定用震度)

									ذ د	ベル2-1地震	f)		ルシー	-2-2地震動	
	回 図 一		世影		国际地	土の単位	細粒分	繰返し三軸	地震時	動的	液状化に	地震時	動的	液状化に	
土層区分	山間子	層区分	米运	N値	唐十必 M店	体積重量	含有率	強度比	せん断	せん断	対する	せん断	せん断	対する	田十分十二字
			(III)		10. 11	$\gamma (kN/m^3)$	FC (%)	$R_{\rm L}$	応力比	強度比	抵抗率	応力比	強度比	抵抗率	刊元結米
									L	R	F_{L}	Г	R	F_{L}	
		砂質土	1.3	2		18	22	-	-	-			-	-	-
沖積砂質土	(¥	砂質土	2.3	3	3 6	18	14	0.181	0.479	0.180	0.37	0.718	0.228	0.31	完全液状化層
As1	0.0	砂質土	3.3	5	с.с	18	12	0.205	0.546	0.204	0.37	0.818	0.275	0.33	完全液状化層
		砂質土	4.3	4		18	21	0.208	0.586	0.208	0.35	0.879	0.282	0.32	完全液状化層
		砂質土	5.3	12		19	17	0.311	0.611	0.310	0.50	0.916	0.527	0.57	完全液状化層
油油配土		砂質土	6.3	18		19	5	0.343	0.623	0.342	0.54	0.934	0.617	0.66	完全液状化層
生見い見上	5.0	砂質土	7.3	14	16.0	19	15	0.302	0.629	0.301	0.47	0.944	0.502	0.53	完全液状化層
A32		砂質土	8.3	21		19	8	0.358	0.631	0.357	0.56	0.947	0.661	0.69	完全液状化層
		砂質土	9.3	15		19	21	0.339	0.631	0.339	0.53	0.946	0.607	0.64	完全液状化層
		粘性土	10.3	8		17	60	-	-	-	-	-		-	-
		粘性土	11.3	4		17	72			ı					
		粘性土	12.3	1		17	85	'		-	'		'	'	'
		粘性土	13.3	2		17	80	'	-	-			-	-	,
沖積粘性土	10.0	粘性土	14.3	2	ć	17	73		-	•			-	-	'
Ac	10.01	粘性土	15.3	3	7.4 1.4	17	73	'	-					-	
		粘性土	16.3	2		17	80	-	-		-			-	-
		粘性土	17.3	3		17	75			1					
		粘性土	18.3	2		17	81	'		-	'	-	'		'
		粘性土	19.3	8		17	65			-	,				
<u> </u>		礫質土	20.3	38		21	40		-	-				-	'
法俱採具上	1	礫質土	21.3	50	50.0	21	15	'					'	-	'
ň		礫質土	22.3	50		21	10			1					

表 5.2.5 液状化判定結果(レベル2地震動)
5.2.4 照査基準

レベル2地震動に対して、地震後の堤防高さが以下の外水位を下回らないことを照査する。

照查外水位 : EL.+2.5m

5.2.5 対策工諸元設定上の制約条件

図 5.2.3 に対策工諸元設定上の制約条件を示す。実際の検討断面では現地状況や施工条件等から様々な制約条件が設定される。本計算モデルでは、図に示すように、対策工は、 堤防のり尻より 5m の位置から外側に実施することを条件として諸元を設定する。

図 5.2.3 対策工諸元設定上の制約条件

5.2.6 浸透安全性の評価に用いる外力

対策後に浸透安全性が現況に比べ有意に低下しないことを照査するために、「河川堤防の 構造検討の手引き」に準じて外力を設定する。

ここでは、降雨、洪水の外力を以下の通りとした。

図 5.2.4 設定した降雨、洪水波形

5.3 現況の照査

現況堤防のレベル2地震動に対する耐震性能照査は、有限要素法による自重変形解析(静 的照査法)により実施した。

なお、解析モデルの右側地表に浮力補正バネを設定したのは、低水河岸の過剰な変形を 抑制するためである。バネはバネ下面の地盤の一要素幅に単位体積重量を乗じて設定した。

(1) 解析モデル

図 5.3.1 に解析モデルおよび設定パラメータを示す。また、解析上の地下水位および解 析モデルの境界条件は以下の通り設定した。

[地下水位]

先に示した地下水位から一律 0.5m 上側に設定することとし、EL.-1.0m とする。

[境界条件]

側方境界 : 付加地盤(左右両側共 50m)および鉛直ローラ(X 固定) 底面境界 : 固定(X、Y 固定)

J
\prec
IV
\langle
定
ĽΚ

			改定。	オレイ	(N:N值)	< 4400N	ON ではな	き、E ₀ =280	率) に基づ	の差(比≊	せん断剛性	なレベルでの	の微小ひす	地土の	、 砂質土と粘	形係数 Eoは	※粘性土の変
I		ſ	0.5	0	I	I	0.333	52500	I	$1.0 imes 10^{-4}$	40	I	21.0	50.0	線形弾性	連成要素	洪積礫質土 Dg
1		-	0.5	0	0.0	-	0.333	3960	1	$1.0 imes 10^{-8}$	0	45 55	17.0	2.4	MC/DP 弾塑性モデル	非排水変形	沖積粘性土 Ac
5.0	10	15	0.5	0	15.0	70	0.333	16800	0.330	$1.0 imes 10^{-5}$	35	0	19.0	16.0	MC/DP 弾塑性モデル	液状化要素	沖積砂質土 As2
0.0	5	5L	0.5	0	10.0	40	0.333	3680	0.197	$1.0 imes 10^{-5}$	30	0	18.0	3.5	MC/DP 弾塑性モデル	液状化要素	沖積砂質土 As1
ı		-	0.5	0	10.01	-	0.333	5250	'	$1.0 imes 10^{-6}$	30	0	18.0	5.0	MC/DP 弾塑性モデル	連成要素	堤体B
	n n	補正係對 基準給直 有効応力 σ vo ['] (kN/m ²)	初期水平 土圧係数 K	引張強度 qt (kN/m ²)	ダイレイ タンジー角 ♥	相対密度 Dr	ポアソン比	せん断剛性 G (kN/m ²)	繰返し 三軸強度比 RL	透水係数 k (m'sec)	土の 内部摩擦角 ^ゆ (°)	土の 粘着力 c (kN/m ²)	土の単位 体積重量 Y(kN/m ³)	N値	非線形タイプ	変形特性	土層区分

図 5.3.1 解析モデル

※ダイレイタンシー角 ψ は、ψ= φ -20(15°を上限値)で設定。

(2) 耐震性能照查結果

図 5.3.2、図 5.3.3 に現況堤防のレベル 2 地震動に対する耐震性能照査結果を示す。これより、レベル 2-1 地震動およびレベル 2-2 地震動ともに、地震後の堤防高さが照査外水位を下回るため、対策工の検討が必要となる。

[照査結果]

レベル 2-1 地震動	:	(地震後堤防高さ)EL.+1.55m	<	(照查外水位)EL.+2.50m	(NG)
レベル 2-2 地震動	:	(地震後堤防高さ)EL.+1.42m	<	(照查外水位)EL.+2.50m	(NG)

図 5.3.2 レベル 2-1 地震動に対する照査結果

(b)液状化に対する抵抗率 FL分布

図 5.3.3 レベル 2-2 地震動に対する照査結果

5.4 対策後の照査

5.4.1 対策工諸元の設定

対策工の諸元の設定では、改良範囲の設定、改良仕様の設定を行った上で、外的安定 と内的安定を満足するような諸元を設定する。図 5.4.1 に示す改良範囲は、外的安定、 内的安定も含めた手順を経て設定されたものである。

(1) 改良範囲の設定

手引き 6.4 改良範囲の設定では、対策工諸元設定用震度に対する液状化層から支持層 への一定の根入れを確保することと、のり尻直下を改良範囲に含めることが示されてい る。手引きの枠外には、改良幅の目安も示されている。

本ケースでは、(完全) 液状化層は EL.-1.5m~-5.0m に分布することから、EL.-5.0m 以 深の改良体が根入れ部となる。根入れ深さは 1.0m または液状化層厚の 0.1 倍のうち小さ い方(本ケースでは、0.35m) 以上を確保することが目標とされているので、図 5.4.1 に 示す改良範囲はこれを満足していることが確認できる。

また、のり尻直下が改良範囲に含まれており(正確には、接する)、改良高さの6割(4.5m×0.6=2.7m)以上という改良幅の目安も確保されている。

改良範囲

・改良地盤天端標高:EL.-1.5m(地下水位)

・改良高:4.5m

- ・改良幅:4.0m > (目安) 2.7m (OK)
- ・根入れ:1.0m > (目標) 0.35m (OK)
- ・のり尻直下を含む (OK)

図 5.4.1 改良範囲

(2) 改良仕様の設定

改良強度、改良形状は、改良範囲との組み合わせで、内的安定及び外的安定を満足す る条件が変わる。この中から、現場条件も加え、最も合理的な改良強度、改良形状を選 択することになる。

その際、改良形状は施工機の仕様に制約される部分が大きいため、ある程度、施工機 を想定しながら、設計を進める必要がある。

手引きでは、格子間隔は液状化層厚の5割~8割(1.75m~2.80m)が上限、改良率も 50%以上とされており、これらを満足していることが確認できる。

検討用モデルの壁厚について、本計算例では改良部面積の矩形換算により設定した。 ただし、改良径が大口径となる場合、重複部の壁厚が改良直径に比べ極端に細くなり、 鉛直せん断および抜出しせん断破壊に対して弱部となることが想定される。その場合、 鉛直せん断および抜出しせん断照査については重複部の壁厚で照査する方法が考えられ る。

単位(m)

改良率
$$a_{\rm p} = \frac{A_{\rm p}}{A} = \frac{(4.0 \times 2.4) - (0.8 \times 0.8) \times 4}{4.0 \times 2.4} = 0.733 = 73.3(\%)$$

ここに

A_p:1ユニットに占める改良体の面積(m²)

A:1ユニットの改良地盤の面積(m²)

堤防法線方向の改良地盤1ユニットの長さ	$L_{\rm U1}$	= 2.4(m)
1 ユニットに占める堤防法線方向の改良体の長さ	$L_{\rm T1}$	=0.8(m)
堤防法線方向の改良壁の厚さ	l	=0.8(m)
堤防横断方向の改良地盤1ユニットの長さ	$L_{\rm U2}$	=4.0(m)
1 ユニットに占める堤防横断方向の改良体の長さ	L_{T2}	= 2.4(m)
堤防横断方向の改良壁の厚さ	b	=0.8(m)

また、改良強度として、一軸圧縮強さ q_{ua} を 400kN/m²とした。設計に用いるせん断強さ τ_a は以下の通りとなる。

$$\tau_a = 1/2 \cdot q_{ua} = 1/2 \cdot 400 = 200 \text{ (kN/m}^2\text{)}$$

(3) 内的安定、外的安定の検討

1) 照査項目および照査基準値

各照査項目の許容安全率及び許容応力は下表に示す通りである。

表 5.4.1 照査項目および照査基準値

枪	検討項目	照査基準値
从的空空斗筲	滑動に対する照査	$F_{\rm s} = 1.0$
7时女化司异	支持力に対する照査	$F_{\rm s} = 1.0$
	水平せん断	発生せん断応力 < せん断強さ τ_a
内的安定計算	格子壁抜出しせん断	発生せん断応力 < せん断強さ τ_a
	鉛直せん断	発生せん断応力 < せん断強さτα

2) 改良体に作用する土水圧の算定

① 外力の算定(改良地盤)

改良体に働く慣性力は表 5.4.2 に示すように算出した。

	項目	計算式	計算値
W:	改良地盤の全重量	W _t :改良体の全重量=改良体の単位体積重量×体積	
	$(W_{\rm t}+W_{\rm u})$	$= \gamma_t \times V_t = 18.0 \times (4.0 \times 4.5) \times 0.733 = 237.5$	
		Wu:未改良部の全重量=未改良部の単位体積重量×体積	
		$= \gamma_{u} \times V_{u} = \{18.0 \times (4.0 \times 3.5) + 19.0 \times (4.0 \times 1.0)\} \times (1-0.733)$	
		=87.6	325.1
		$W = W_{\rm t} + W_{\rm u} = 325.1$	kN/m
$W_{\rm E}$	改良地盤の上面に	$= \gamma \times V = 18.0 \times (4.0 \times 1.5) = 108.0$	
	載る盛土の重量		108.0
			kN/m
H:	改良地盤の慣性力	改良地盤の全重量×設計水平震度×動的荷重低減係数×	
		深度方向の低減係数	
		$= W \cdot k_{\rm h} \cdot \alpha_{\rm dS} \cdot (1 - 0.03 \cdot H_t)$	14.4
		$=325.1 \times 0.18 \times 0.3 \times (1-0.03 \times 6.0) = 14.4$	kN/m
$H_{\rm E}$:	改良地盤の上面に	改良地盤の上面に載る盛土の重量×設計水平震度×動的	
	載る盛土の慣性力	荷重低減係数×深度方向の低減係数	
		$= W_{\rm E} \cdot k_{\rm h} \cdot \alpha_{\rm dS} \cdot (1-0.03 \cdot H_t)$	4.8
		$=108.0 \times 0.18 \times 0.3 \times (1-0.03 \times 6.0) = 4.8$	kN/m

表 5.4.2 改良体の慣性力

備考

- ※ 改良体の単位体積重量については、工法や現地地盤条件によって異なるため、実際の設計に おいては採用する工法および現地地盤条件を基に設定するものとする。本計算例では現地盤 相当としてy_t=18.0kN/m³を用いることとした。
- ※ 水平震度の深度方向の低減係数に用いる Htは地表面からの深度とする。
- ※ 改良地盤上面に載る盛土の慣性力の算定においては、改良地盤上面に載る盛土が改良地盤と 一体で挙動すること、および改良地盤では振動が大きく増幅しないことが考えられるため、 水平震度の深度方向の低減計算に用いる深度は、改良体底面深度とする。ただし、盛土が高 い場合等、周囲地盤の挙動の影響が大きいと考えられる場合には、別途考慮してもよい。

外力の算定(上載荷重)

本ケースにおける盛土による荷重は、図 5.4.3 に示すように盛土全体の重量をのり尻間の距離で除して算定する。改良体が盛土の下面に入る場合は、盛土全重量から改良体上部の重量は除き、のり尻間距離からも盛土下面に入る距離を除くこととする。

- ・盛土断面積 : (5.0+25.0)×5.0/2 = 75.0 (m²)
- ・盛土全重量 : $\gamma_t \times A = 18.0 \times 75.0 = 1350.0$ (kN/m)
- ・上載荷重(盛土平均荷重): 盛土全重量 ÷ 平均荷重算定距離

 $=1350.0 / 25.0 = 54.0 (kN/m^2)$

図 5.4.3 盛土荷重算出範囲

次に、FEM 解析を用いて盛土による荷重を算定する方法を示す。上記の盛土全重量を 平均荷重算定距離で除して求める方法は、のり面勾配が緩い場合や堤体直下の未改良部 範囲が極端に狭くなった場合には、安全側過ぎることが考えられ、このような場合には FEM 解析を用いて算定すると良い。

具体の方法については、図 5.4.4に示すように改良体に挟まれた地盤を対象とした弾 性 FEM 解析を実施する。解析モデルは、図 5.4.5に示すように液状化層下端までの地 盤をモデル化し、境界条件については、側面を鉛直ローラー、底面を固定条件とする。 解析諸元値の設定については、表 5.4.3に示すように盛土下部の層(地下水位以浅の非 液状化層も液状化層と同様に取り扱う)が非圧縮(ポアソン比 0.499)の弾性体で、体積 弾性係数が一般的なポアソン比(ここでは、0.333)の時と同じになるよう、せん断剛性 (低下前 3680kN/m²)を低下させる。

算出手順は、図 5.4.6のフローに示すとおりで、水平地盤の初期応力解析、盛土造成 による線形弾性応力解析の順に FEM 解析を実施し、改良体側面の要素に発生する水平方 向応力について、盛土造成前後の差分の深度方向分布を平均して、漸増成分土圧増分を 算出する。平均の範囲は、盛土直下から液状化層下端までとする。算出結果を図 5.4.7 に示す。本ケースでは、漸増成分土圧増分の平均が 49.3(kN/m²)となり、概ね盛土全重量 を平均荷重算定距離で除して求める方法と同様の結果となる。

図 5.4.4 想定改良位置

図 5.4.5 FEM 解析モデル

表 5.4.3 FEM 解析諸元

	解析モデル	ポアソン比 <i>v</i>	せん断剛性係数 <i>G</i> (kN/m ²)	体積弾性係数 <i>K</i> (kN/m ²)
盛土	線形弾性	0.333	5250	13969
液状化層および 地下水位以浅の 非液状化層	線形弾性	0.499 (0.333)	20 (3680)	9791

※()内は液状化前の諸元

・液状化後を模擬したせん断剛性係数 G1 の算出

$$K = \frac{2G_0(1+\nu)}{3(1-2\nu)} = \frac{2\times3680\times(1+0.333)}{3\times(1-2\times0.333)} = 9791 \,(\text{kN/m}^2)$$

$$G_1 = \frac{3K(1-2\nu)}{2(1+\nu)} = \frac{3 \times 9791 \times (1-2 \times 0.499)}{2 \times (1+0.499)} = 20 \text{ (kN/m}^2)$$

図 5.4.6 FEM 解析による盛土荷重の算出フロー

図 5.4.7 漸増成分土圧増分の深度方向分布

③ 液状化判定

土圧算定のために、盛土荷重を考慮した液状化判定を実施した。その結果を表 5.4.5 に示す。主働側については、盛土荷重による上載圧の影響があるため、固結工法におい ては、上載荷重(盛土平均荷重)を加えて地震時せん断応力比Lを算出し、液状化判定 を行った。

表 5.4.4 盛土荷重を考慮した液状化判定結果

深度	N值	土質	Nı	Na	cw	FC	σ_{v}	σ_{v}'	r _d	L	R	F_L	平均 F_L
G.L(m)	回	-	口	旦	-	%	kN/m ²	kN/m ²	-	-			
1.3	2	砂質土	3.64	6.08	1	22	77.4	77.4	0.981	-	_	-	
2.3	3	砂質土	4.93	5.92	1	14	95.4	87.4	0.966	0.190	0.180	0.949	
3.3	5	砂質土	7.63	8.30	1	12	113.4	95.4	0.951	0.203	0.204	1.003	
4.3	4	砂質土	5.70	8.69	1	21	131.4	103.4	0.936	0.214	0.208	0.974	0.975
5.3	12	砂質土	15.97	20.28	1	17	149.7	111.7	0.921	0.222	0.310	1.396	
6.3	18	砂質土	22.38	22.38	1	5	168.7	120.7	0.906	0.228	0.342	1.501	
7.3	14	砂質土	16.33	19.47	1	15	187.7	129.7	0.891	0.232	0.301	1.298	
8.3	21	砂質土	23.08	23.08	1	8	206.7	138.7	0.876	0.235	0.357	1.520	
9.3	15	砂質土	15.58	22.19	1	21	225.7	147.7	0.861	0.237	0.339	1.432	1.429

表 5.4.5 液状化判定結果一覧

上一层	主働個	U)	受働側	
上。	$F_{ m L}$	判定	$F_{ m L}$	判定
表 層 (EL.±0.0m~EL1.5m)	地下水位以浅	非液状化層	地下水位以浅	非液状化層
上層砂質土層 (EL1.5m~EL5.0m)	平均 F _L =0.975	完全 液状化層	平均 F _L =0.813	完全 液状化層
下層砂質土層 (EL5.0m~EL10.0m)	平均 F _L =1.429	非液状化層	平均 F _L =1.168	準液状化層

④ 土圧係数

各層の土圧係数を算定する。

算定する際に用いる震度には、対策工諸元設定用震度に低減係数 α_{ds} を乗じた以下の値を用いた。

 $k_{\rm h} = 0.18 \times 0.3 = 0.054$

また、受働土圧係数の算定においては、壁面摩擦角 δ が大きくなる場合、受動土圧が 過大となるため、受働側の壁面摩擦角は $\delta=0^{\circ}$ として適用する。

・主働側

計算深度	計算式	土圧係数
	非液状化層のため、「地震時の主働土圧係数」を求める。	
表層	地震時、水位以浅、砂質土	
(地下水以浅)	$\phi = 30^{\circ}, \ \delta = 15^{\circ}, \ k_{\rm h} = 0.054, \ \theta = \tan^{-1} k_{\rm h} = 0.054 (\text{rad}) \downarrow \forall$	
EL.±0.0m	$K = -\frac{\cos^2(\phi - \theta)}{\cos^2(\phi - \theta)}$	
\sim	$\mathbf{K}_{\rm EA} = \frac{1}{\left[\sin(\phi + \delta) \cdot \sin(\phi - \theta) \right]^2} \cdot \cos \theta$	
EL1.5m	$\cos\theta \cdot \cos(\delta + \theta) \cdot \left\{1 + \sqrt{\frac{\cos(\delta + \theta)}{\cos(\delta + \theta)}}\right\}$	$K_{\rm EA} =$
		0.324
1 層目	完全液状化層のため、「液状化した土層の泥水圧」を対象とする。	
砂質土層	このとき、K _A =1.000	
(完全液状化層)		
\sim		$K_{\Delta} =$
EL5.0m		1.000
	非液状化層のため、「地震時の主働土圧係数」を求める。	
	地下水位以深のため見かけの震度 kh'を用いる。	
2 層目	$k_{\rm h} = 0.054, \ q' = 54.0 \text{kN/m}^2 \downarrow \%$	
砂質土層	$k_{\rm w}' = \frac{\gamma_1 h_1 + \gamma'_2 h_2 + \gamma_{\rm w} h_2 + \gamma'_3 h_3 + \gamma_{\rm w} h_3 + q'}{k_{\rm w}} = 0.083,$	
(非液状化層)	$\gamma_{1}h_{1} + \gamma'_{2}h_{2} + \gamma'_{3}h_{3} + q'$	
	$\theta = \tan^{-1} k_{\rm h}' = 0.083 ({\rm rad})$	
EL5.0m	$\phi = 35^\circ, \delta = 17.5^\circ$ より	
\sim	$K = \frac{\cos^2(\phi - \theta)}{\cos^2(\phi - \theta)}$	
EL10.0m	$R_{\rm EA} = \frac{1}{\left[\sin(\phi+\delta)\cdot\sin(\phi-\theta)\right]^2} \cos\theta$	v —
	$\frac{\cos \theta \cdot \cos(\theta + \theta) \cdot \left(1 + \sqrt{-\cos(\delta + \theta)}\right)}{\cos(\delta + \theta)} \int_{0}^{1 + \sqrt{-\cos(\delta + \theta)}} \int_{0}^{1 + -\cos(\delta $	$\Lambda_{EA} = 0.281$
砂質土層 (完全液状化層) EL1.5m ~ EL5.0m 2 層目 砂質土層 (非液状化層) EL5.0m ~ EL10.0m	このとき、 $K_{A} = 1.000$ 非液状化層のため、「地震時の主働土圧係数」を求める。 地下水位以深のため見かけの震度 k_{h} 'を用いる。 $k_{h} = 0.054, q' = 54.0$ kN/m ² より $k_{h}' = \frac{\gamma_{1}h_{1} + \gamma'_{2}h_{2} + \gamma_{w}h_{2} + \gamma'_{3}h_{3} + \gamma_{w}h_{3} + q'}{\gamma_{1}h_{1} + \gamma'_{2}h_{2} + \gamma'_{3}h_{3} + q'}k_{h} = 0.083,$ $\theta = \tan^{-1}k_{h}' = 0.083$ (rad) $\phi = 35^{\circ}, \delta = 17.5^{\circ}$ より $K_{EA} = \frac{\cos^{2}(\phi - \theta)}{\cos\theta \cdot \cos(\delta + \theta) \cdot \left\{1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \theta)}{\cos(\delta + \theta)}}\right\}^{2}} \cdot \cos \delta$	$K_{\rm A} = 1.000$ $K_{\rm EA} = 0.281$

表 5.4.6 主働側各層の土圧係数

・受働側

計算深度	計算式	土圧係数
	非液状化層のため、「地震時の受動土圧係数」を求める。	
表層	地震時、水位以浅、砂質土	
(地下水以浅)	$\phi = 30^{\circ}, \ \delta = 0^{\circ}, \ k_{\rm h} = 0.054, \ \theta = \tan^{-1} k_{\rm h} = 0.054$ (rad)	
\sim	$K = \frac{\cos^2(\phi - \theta)}{\cos^2(\phi - \theta)} + \cos^2(\phi - \theta)$	
EL1.5m	$\cos\theta \cdot \cos(\delta - \theta) \cdot \left\{ 1 - \left[\frac{\sin(\phi - \delta) \cdot \sin(\phi - \theta)}{\sin(\phi - \theta)} \right]^2 \right\}^2$	$K_{\rm EP} =$
	$\frac{\cos \psi \cos(\psi - \psi)}{1} \left[\begin{array}{c} 1 \\ \sqrt{1 - \cos(\delta - \theta)} \end{array} \right]$	2.905
1層目砂質土層	完全液状化層のため、「液状化した土層の泥水圧」を対象とする。	
(完全液状化層)	このとき、 $K_{\rm P}$ =1.000	
EL1.5m \sim		$K_{\rm P} =$
EL5.0m		1.000
	準液状化層のため、「常時受働土圧」および「過剰間隙水圧を考	
	 慮した地震時の受働土圧係数」を求める。	
	常時受働土圧、 $\phi = 35^\circ, \delta = 0^\circ$	
	$\kappa = \cos^2 \phi$	
	$\mathbf{A}_{\rm P} = \frac{1}{\left(1 - \frac{\sin(\phi - \delta) \cdot \sin\phi}{\sin\phi}\right)^2} \cdot \cos \delta$	$K_{\rm P} =$
	$\cos \delta \cdot \left\{ 1 - \sqrt{\frac{1}{\cos \delta}} \right\}$	3.690
	過剰間隙水圧を考慮した地震時の受働土圧係数	
2 層目砂質土層	地下水位以深のため見かけの震度 kh'を用いる。	
(準液状化層) EL5.0m	k _h =0.054 より	
EL10.0m	$k_{\rm h}' = \frac{\gamma_1 h_1 + \gamma'_2 h_2 + \gamma_w h_2 + \gamma'_3 h_3 + \gamma_w h_3}{\gamma_1 h_1 + \gamma'_2 h_2 + \gamma'_3 h_3} k_{\rm h} = 0.100,$	
	$\theta = \tan^{-1} k_{\rm h}^{2} = 0.100(rad)$	
	$r_{ m u}=F_{ m L}^{-7}=0.337$ (r_u :過剰間隙水圧比), $\phi=35^\circ$ より	
	$\tan \phi' = (1 - r_u) \cdot \tan \phi = 0.464, \& \neg \subset \phi' = 24.9^{\circ}$	
	$\delta = 0^{\circ}, \delta' = 0^{\circ}$	
	$K_{}' = \frac{\cos^2(\phi' - \theta)}{\cos^2(\phi' - \theta)}$	
	$\sum_{\alpha \in P} \cos(\theta \cdot \cos(\delta' - \theta)) \left\{ 1 - \left[\frac{\sin(\phi' - \delta') \cdot \sin(\phi' - \theta)}{\sin(\phi' - \theta)} \right]^2 \right\}^2$	$K_{\rm EP}$ ' =
	$\int \frac{1}{\sqrt{1-2}} \int \frac{1}{\sqrt{1-2}} \frac{1}{\sqrt{1-2}} \int \frac{1}{\sqrt{1-2}} \frac{1}{1-2$	2.291

表 5.4.7 受働側各層の土圧係数

⑤ 土水圧の振動成分

土水圧の振動成分は拡張した Westergaard の土水圧公式により求めた。

$$P_{\rm dw}(z,\gamma) = \alpha_{\rm dS} \frac{7}{8} k_{\rm hr}(\gamma_w + \gamma' \cdot r_u) \sqrt{H_{\rm d} \cdot (z - D_w)}$$

z : 地盤面からの深度(m)

D_w:地盤面から地下水位までの深度(m)

α_{ds} : 固結工法の動的荷重低減係数(一般に、0.3)

- γw : 水の単位体積重量 (kN/m³)
- γ' : 土の水中単位体積重量 (kN/m³)
- ru : 堤防盛土外側の水平地盤部での過剰間隙水圧比
- H_d:地下水位から最も下の液状化層(完全液状化層と準液状化層)の下端
 までの距離(m)

km(z): 深度に応じて低減した水平震度で以下の式により算出する。

 $k_{\rm hr}(z) = k_{\rm h}(1 - 0.03z)$

	土層区分	計算深度	計算式	動水圧 P _{dw} (kN/m ²)
主	1層目	EL1.5m (下)	z=0.00	0.0
側	(完全液状化)	EL5.0m (上)	$0.3 \times 7/8 \times 0.18 \times (1 - 0.03 \times 5.0) \times (10.0 + 8.0 \times 1.0) \times \sqrt{(3.5 \times 3.5)} = 2.53$	2.5
	1層目	EL1.5m (下)	z=0.00	0.0
受働	砂頁工層 (完全液状化)	EL5.0m (上)	$0.3 \times 7/8 \times 0.18 \times (1 - 0.03 \times 5.0) \times (10.0 + 8.0 \times 1) \times \sqrt{(8.5 \times 3.5)} = 3.94$	3.9
衝側	2層目	EL5.0m (下)	$0.3 \times 7/8 \times 0.18 \times (1 - 0.03 \times 5.0) \times (10.0 + 9.0 \times 0.337) \times \sqrt{(8.5 \times 3.5)} = 2.86$	2.9
	(準液状化)	EL6.0m (上)	$0.3 \times 7/8 \times 0.18 \times (1 - 0.03 \times 6.0) \times (10.0 + 9.0 \times 0.337) \times \sqrt{(8.5 \times 4.5)} = 3.12$	3.1

表 5.4.8 土水圧の振動成分

⑥ 土水圧強度の算定

・主働側

表 5.4.9 主働側の土水圧強度

土層 区分	計算 深度 EL.(m)	計算式	土圧 強度 (kN/m ²)		
表		地震時主働土圧+Pwを求める。			
/////////////////////////////////////		KEA=0.324, 主働側上載荷重 WA=54.0 kN/m			
地液下状		$\sigma_h(z) = K_{\text{EA}} \cdot \{\sigma_v'(z) + w\} - 2c\sqrt{K_{\text{EA}}} + u(z)$			
水化	0m	$\sigma_{h1}(0) = 0.324 \times \{0 + 54.0\} = 17.50$	17.5		
以)浅	-1.5m(上)	$\sigma_{h2}(1.5) = 0.324 \times \overline{\{18 \times 1.5 + 54.0\}} = 26.24$			
1 ~		「液状化した土層の泥土圧+動水圧」を求める。			
▲ 一 一 一 全		$\sigma_h(z) = \sigma_v(z) + w + P_{dw}(z, \gamma_{sat})$			
「 液 砂 状					
質化	-1.5m(下)	$\sigma_{h3}(1.5) = 27.0 + 54.0 + 0.0 = 81.0$	81.0		
層 〜	-5.0m(上)	$\sigma_{h4}(5.0) = 90.0 + 54.0 + 2.5 = 146.50$	146.5		
2		地震時主働土圧+Pwを求める。			
層非		$w_{\rm A}$ =54.0 kN/m, $K_{\rm EA}$ =0.281, c=0.0 kN/m ² ,			
[□] 液 砂状		$\sigma_h(z) = K_{\text{EA}} \cdot \{\sigma_v'(z) + w\} - 2c\sqrt{K_{\text{EA}}} + u(z)$			
質化土層	-5.0m(下)	$\sigma_{h5}(5.0) = 0.281 \times \{55.0 + 54.0\} - 0.0 + 35.0 = 65.63$	65.6		
僧	-6.0m(上)	$\sigma_{h6}(6.0) = 0.281 \times \{64.0 + 54.0\} - 0.0 + 45.0 = 78.16$			

・受働側

表 5.4.10 受働側の土水圧強度

土層 区分	計算 深度 EL.(m)	計算式	土圧 強度 (kN/m ²)
表		地震時受働土圧+Pwを求める。	
層 世 北 北		KEP=2.905, 受働側上載荷重 wP=0.0 kN/m ²	
^地 液 水状		$\sigma_h(z) = K_{\rm EP} \cdot \{\sigma_v'(z) + w\} + 2c\sqrt{K_{\rm EP}} + u(z)$	
位層	0m	$\sigma_{h1}(0) = 0.00$	0.0
浅	-1.5m(上)	$\sigma_{h2}(1.5) = 2.905 \times \{27.00 + 0.00\} = 78.435$	78.4

1 -		「液状化した土層の泥土圧-動水圧」を求める。			
· 層 完 目 全		$\sigma_h(z) = \sigma_v(z) - P_{\rm dw}(z, \gamma_{sat})$			
- 液 砂状					
質 化 土 層	-1.5m(下)	$\sigma_{h3}(1.5) = 27.00 - 0.00 = 27.00$	27.0		
僧ご	-5.0m(上)	$\sigma_{h4}(5.0) = 90.00 - 3.9 = 86.1$	86.1		
		「常時受働土圧+土水圧漸増成分-動水圧」と「間隙水圧を考慮した地震			
		時受働土圧」を求め、いずれか安全側(小さい方)を採用する。			
		$\sigma_{h}(z) = K_{\mathrm{P}} \cdot \{\sigma_{v}'(z) + w\} + u(z) + r_{u} \cdot (1 - K_{\mathrm{P}}) \cdot \{\sigma_{v}'(z) + w\} - P_{\mathrm{dw}}(z)$			
		$\sigma_{h}(z) = K_{\rm EP} \cdot \{\sigma_{v}(z) + w\} + u(z)$			
2 属 澭		$\sigma_{h5i}(5.0) = 3.690 \times (55.0 + 0) + 35.0 + 0.337$			
眉 液	-5.0m(下)	$\times (1 - 3.690) \times (55.0 + 0) - 2.9 = 185.2$			
砂状質化		$\sigma_{h5e}(5.0) = 2.291 \times (55.0 + 0) + 35.0 = 161.0$			
土間層		$\sigma_{h5} = \min(\sigma_{h5i}, \sigma_{h5e})$ \updownarrow 0	161.0		
		$\sigma_{h6i}(6.0) = 3.690 \times (64.0 + 0) + 45.0 + 0.337$			
		$\times (1 - 3.690) \times (64.0 + 0) - 3.1 = 220.0$			
	-6.0m(上)	$\sigma_{h6e}(6.0) = 2.291 \times (64.0 + 0) + 45.0 = 191.6$			
		$\sigma_{\scriptscriptstyle h6} = \min(\sigma_{\scriptscriptstyle h6i}, \sigma_{\scriptscriptstyle h6e})$ L V	191.6		

⑦ 土庄·水庄強度分布図

図 5.4.8 土水圧強度の分布

⑧ 土圧・水圧合力

No.	P _{AH} (kN/m)		y (m)	$M_{\rm A}$ (kN·m/m)	δ (°)	<i>c</i> (kN/m ²)	P _{AV} (kN/m)
1	$1/2 \times 17.5 \times 1.5 =$	13.13	5.500	72.2	15.0	—	3.52
2	$1/2 \times 26.2 \times 1.5 =$	19.65	5.000	98.3	15.0	—	5.27
3	$1/2 \times 81.0 \times 3.5 =$	141.75	3.333	472.5	0.0	—	0.00
4	$1/2 \times 146.5 \times 3.5 =$	256.38	2.167	555.5	0.0	—	0.00
5	$1/2 \times 65.6 \times 1.0 =$	32.80	0.667	21.9	17.5	—	10.34
6	$1/2 \times 78.2 \times 1.0 =$	39.10	0.333	13.0	17.5	_	12.33
Σ	_	502.8	_	1233.4	_	_	31.5

表 5.4.11 主働側の土水圧合力

ここに、 PAH : 改良地盤の主働側に作用する土水圧合力の水平成分 11

 P_{AV} :

の鉛直成分 砂の場合 $P_{AV} = P_{AH} \cdot \tan \delta$ (または、 $P_{AH} \cdot \tan \delta$)

粘性土の場合 $P_{AV} = c \cdot h (h : 層厚または根入れ長)$

表 5.4.12 受働側の土水圧合力

No.	P _{PH} (kN/m)	y (m)	$M_{\rm P}$ (kN·m/m)	δ (°)	с (kN/m ²)	P _{PV} (kN/m)	
1)'	$1/2 \times 78.4 \times 1.5 =$	58.80	5.000	294.0	0.0		0.00
2'	$1/2 \times 27.0 \times 3.5 =$	47.25	3.333	157.5	0.0	—	0.00
3'	$1/2 \times 86.1 \times 3.5 =$	150.68	2.167	326.5	0.0	—	0.00
(4)'	$1/2 \times 161.0 \times 1.0 =$	80.50	0.667	53.7	0.0		0.00
5'	$1/2 \times 191.6 \times 1.0 =$	95.80	0.333	31.9	0.0	—	0.00
Σ	_	433.0	—	863.6	—		0.00

ここに、	$P_{ m PH}$:	改良地盤の受働側に作用する土水	圧合力の水平成分
	P_{PV} :	11	の鉛直成分
	心の坦く		\mathbf{D} (\mathbf{C}^{\prime})

砂の場合 $P_{PV} = P_{PH} \cdot \tan \delta$ (または、 $P_{PH} \cdot \tan \delta$) 粘性土の場合 考慮しない

3) 対策工の外的安定の検討

考慮すべき外力

考慮すべき改良地盤に作用する外力は以下の通りである。

抵抗力		鉛直方向	X	水平方向	V(m)	$M_{ m R}$
		V(kN/m)	(m)	H (kN/m)	I (III)	(kN·m/m)
改良地盤の有効重量	W	145.1	2.00	_	_	290.2
改良地盤上の盛土	117					
の重量	WE	108.0	2.00	_	_	216.0
主働側土水圧(鉛直)	P_{AV}	31.5	4.00		_	126.0
受働側土水圧(鉛直)	$P_{\rm PV}$	0.0	0.0		_	0.0
受働側土水圧(水平)	P_{PH}			433.0	1.994	863.6
改良地盤に作用するせ	F_{R}			100.0	0.0	0.0
ん断抵抗力 F _{RT+} F _{RU}	- K			199.2	0.0	0.0
Σ		284.6		632.2	_	1495.8
町手		鉛直方向	X	水平方向	V (m)	$M_{ m D}$
闷公里几八丁		V(kN/m)	(m)	H (kN/m)	I (III)	(kN·m/m)
改良地盤の慣性力	Н		_	14.4	2.250	32.4
主働側土水圧	P_{AH}			502.8	2.453	1233.4
改良地盤上部盛土の慣	$H_{\rm e}$					
性力				4.8	5.250	25.2
Σ				522.0		1291.0

表 5.4.13 改良地盤に働く外力

※計算式は次ページ以降に示す。

図 5.4.9 固結工法の検討で用いる外力図

② 滑動の検討

改良地盤に作用する外力は以下の通りである。

- ・改良地盤にかかる慣性力H = 14.4 (kN/m)・改良地盤上部の土塊にかかる慣性力 $H_E = 4.8 (kN/m)$ ・主働側土水圧合力水平成分 $P_{AH} = 502.8 (kN/m)$ ・受働側土水圧合力水平成分 $P_{PH} = 433.0 (kN/m)$
- ・改良地盤底面に作用するせん断抵抗力の合力は、以下の式を用いて算定した。 $F = F + F = c \cdot B + (W'+W + P - P)$ tan ϕ

$$T_{R} = T_{RT} + T_{RU} = c_{B} \cdot D + (W + W_{E} + T_{AV} - T_{PV}) \cdot \tan \varphi_{B}$$

= $0.0 \times 4.0 + (145.1 + 108.0 + 31.5 - 0.0) \times 0.700$
= 199.2 (kN/m)
ここに、
 c_{B} : 支持層の粘着力 0.0 (kN/m²)

øB:支持層の内部摩擦角 35.0 (°)

以上より滑動安全率 Fsを以下の式により算定した。

$$F_{\rm S} = \frac{P_{\rm PH} + F_{\rm R}}{H + H_{\rm E} + P_{\rm AH}} = \frac{433.0 + 199.2}{14.4 + 4.8 + 502.8} = \frac{632.2}{522.0} = 1.211 > 1.000 \sim \text{O.K.} \sim 1.000 = 1.000$$

3 支持力の検討

荷重の合力の作用点を中心とする仮想の基礎幅を考え、極限状態ではこの部分に荷 重が一様に働くとする Meyerhof の考え方に準拠している。

改良地盤底面の鉛直地盤反力と極限支持力から安全率を算出し、所定の安全率以上 となることを照査する。支持力安全率は次式により求めた。

$$F_{\rm S} = \frac{Q_u}{Q_{\rm V}}$$

ここに、

Qu : 荷重の偏心傾斜、寸法、根入れ深さを考慮した極限支持力(kN/m)

*Q*v : 地盤反力(kN/m)

a) 外力補正

支持力の検討では外力が釣合っているものとして考え、滑動の照査用外力のうち、 水平地盤側(受働側)の支持層及び非液状化から作用する土水圧合力と改良地盤底面 のせん断抵抗力に補正を加える。

支持層の受働側土水圧合力と改良地盤底面のせん断抵抗力の発揮割合*f*を、以下の式 により求め、支持層の受働側土水圧合力と改良地盤底面のせん断抵抗力に発揮割合*f* を乗じた外力を用いた。

$$f = \frac{H + H_{\rm E} + P_{\rm AH} - P_{\rm PH2}}{P_{\rm PH1} + P_{\rm PH3} + F_{\rm R}}$$

ここに、

P_{PHn}: n 層目砂質土層から改良地盤に作用する受働側土水圧合力の水平成分

図 5.4.10 支持力を検討する際の改良地盤に作用する水平方向の外力補正

	-	
受働側で抵抗力を発揮する水平力	計算式 (図 5.4.8より)	水平方向 <i>H</i> (kN/m)
表層非液状化層 受働側土水圧合力 PPHI	$1/2 \times 78.4 \times 1.5 =$	58.8
支持層非液状化層 受働側土水圧合力 PPH3	$1/2 \times (161.0 + 191.6) \times 1.0 =$	176.3
改良地盤底面に作用するせん断抵抗力 FR	3) ②より	199.2
Σ		434.3
主働側の水平力	計算式	水平方向 <i>H</i> (kN/m)
改良地盤の慣性力 H	表 5.4.2より	14.4
改良地盤上部盛土の慣性力 H _E	表 5.4.2より	4.8
主働側土水圧合力 (P _{AH1} +P _{AH2} +P _{AH3}) P _{AH}	表 5.4.11 より	502.8
Σ		522.0
受働側で抵抗力を発揮しない水平力	計算式 (図 5.4.8より)	水平方向 <i>H</i> (kN/m)
上層液状化層の受働側土水圧合力 P _{PH2}	$1/2 \times (27.0+86.1) \times 3.5 =$	197.9
Σ		197.9

表 5.4.14 外力補正(発揮割合 f)の計算

上表より、
$$f = \frac{14.4 + 4.8 + 502.8 - 197.9}{58.8 + 176.3 + 199.2} = \frac{522.0 - 197.9}{434.3} = 0.746$$

b) 鉛直地盤反力

固結工法による改良地盤の地盤反力度分布は、図 5.4.11 に示すように荷重の合力の 作用点を中心とする仮想の基礎幅に長方形分布し、この部分に荷重が一様に働くとす る考え方に基づき、地盤反力とその分布を求めた。

図 5.4.11 改良地盤底面の地盤反力分布

図 5.4.12 改良地盤に作用する力

鉛直力とモーメントから、荷重の偏心量 e を求めた。

・鉛直力 V : 改良地盤底面に作用する力以外による鉛直力(kN/m)
V = W'+W_E +
$$P_{AV} - f \cdot P_{PV1} - P_{PV2} - f \cdot P_{PV3}$$

= 145.1+108.0+31.5-0.746×0.0-0.0-0.746×0.0
= 284.6 (kN/m)

・抵抗モーメント MR (表 5.4.11、表 5.4.12、表 5.4.13より)

$$M_{\rm R} = W \cdot \frac{B}{2} + W_{\rm E} \cdot x_{\rm WE} + P_{\rm AV} \cdot B + f \cdot P_{\rm PH1} \cdot y_{\rm PPH1} + P_{\rm PH2} \cdot y_{\rm PPH2} + f \cdot P_{\rm PH3} \cdot y_{\rm PPH3}$$

= 145.1×2.0+108.0×2.0+31.5×4.0+0.746×58.8×5.0
+ (47.25×3.333+150.7×2.167)+0.746×(80.5×0.667+95.8×0.333)
= 1399.4(kN/m \cdot m)_{\rm P}

・転倒モーメント M_D(表 5.4.2、表 5.4.11より)

$$M_{\rm D} = H \cdot y_{\rm H} + H_{\rm E} \cdot y_{\rm HE} + P_{\rm AH1} \cdot y_{\rm PAH1} + P_{\rm AH2} \cdot y_{\rm PAH2} + P_{\rm AH3} \cdot y_{\rm PAH3}$$

= 14.4 × 2.25 + 4.8 × 5.25 + (13.13 × 5.5 + 19.65 × 5.0)
+ (141.75 × 3.333 + 256.38 × 2.167) + (32.8 × 0.667 + 39.1 × 0.333)
= 1291.0 (kN/m · m)

ここに、

W':改良地盤有効重量 ($W - \gamma_{w} \times V$ (改良体体積) = 325.1-10.0×4.5×4.0=145.1) W_{E} :改良地盤上面に載る盛土の重量 ($W_{E} = \gamma_{E} \times V_{E} = 18.0 \times 1.5 \times 4.0 = 108.0$) x, y:作用 (重心) 位置の改良地盤端部からの距離(m)

・モーメント*M* : 改良地盤底面に作用する力以外によるモーメント(>0)(kN/m・m) $M = M_{\rm R} - M_{\rm D} = 1399.4 - 1291.0 = 108.4$ (kN/m・m)

・荷重の偏心量 e

$$e = B/2 - \frac{M}{V}$$

= 4.0/2-108.4 / 284.6
= 1.619 (m)

c)極限支持力

荷重の偏心傾斜、寸法、根入れ深さを考慮し、以下の式により極限支持力を求めた。

$$Q_{u} = B_{e} \left\{ \alpha \kappa c_{\mathrm{B}} N_{\mathrm{c}} S_{\mathrm{c}} + \kappa q N_{\mathrm{q}} S_{\mathrm{q}} + \frac{1}{2} \gamma'_{\mathrm{B}} \beta B_{e} N_{\gamma} S_{\gamma} \right\}$$

ここに、

 Q_u :荷重の偏心傾斜、寸法、根入れ深さを考慮した極限支持力(kN/m) c_B :支持層の粘着力(kN/m²) q :上載荷重(周辺地盤の改良地盤底面高さにおける鉛直有効応力) (kN/m²) B_e :荷重の偏心を考慮した有効載荷幅 (m) γ'_B :支持層の有効単位体積重量 (kN/m³) α 、 β :基礎の形状係数(特殊な形状を除き、一般に 1.0 を使ってよい) κ :根入れ効果に対する割増し係数 N_c 、 N_q 、 N_γ :荷重の傾斜を考慮した支持力係数 S_c 、 S_q 、 S_γ :支持力係数の寸法効果に関する補正係数

・有効上載荷幅 Be

$$B_e = B - 2e$$

= 4.0 - 2×1.619
= 0.762 (m)

・上載荷重*q*

 $q = \gamma' \times D_{\rm r} + \sigma'_{\rm v} = 9.0 \times 1.0 + 55.0 = 64.0 \,({\rm kN/m^2})$ ここに、 $D_{\rm r}$: 有効根入れ深さ

·支持力係数

根入れ効果に対する割増し係数κ、荷重の傾斜を考慮した支持力係数N_c、N_q、N_γ、 支持力係数の寸法効果に関する補正係数S_c、S_q、S_γは道路橋示方書・同解説IV下部構 造編¹⁾を参考に以下のように設定した。

・荷重の傾斜	$tan\theta$	$= H_{\rm B}/V_{\rm r} = 0.522$
・改良体に作用する鉛直力	Vr	= 284.6 (kN/m)
・改良体底面に作用するせん断力	$H_{ m B}$	$= f \cdot F_{\rm R} = 148.6 ({\rm kN/m})$
・根入れ効果に対する割り増し係数	κ	$= 1 + 0.3 \times D_{\rm r} / B_{\rm e} = 1.394$

項目 記号 係数值 $N_{\rm c} =$ 13.49 荷重の傾斜を考慮した支持力係数 $N_q =$ 8.63 2.91 $N_{\rm r} =$ 0.00 $S_c =$ 支持力係数の寸法効果に関する補正係数 $S_q =$ 0.54 1.00 $S_r =$

表 5.4.15 支持力係数

・極限支持力

$$\begin{split} Q_u &= B_e \left\{ \alpha \kappa c_{\rm B} N_{\rm c} S_{\rm c} + \kappa q N_{\rm q} S_{\rm q} + \frac{1}{2} \gamma'_{\rm B} \beta B_e N_{\gamma} S_{\gamma} \right\} \\ &= 0.762 \times (1.0 \times 1.394 \times 0.0 \times 13.49 \times 0.0 + 1.394 \times 64.0 \times 8.63 \times 0.54 \\ &+ 1/2 \times 9.0 \times 1.0 \times 0.762 \times 2.91 \times 1.00) \\ &= 0.762 \times (0.0 + 415.76 + 9.98) \\ &= 324.4 \ (\rm kN/m) \end{split}$$

支持力 Qv

 $Q_{\rm V} = V = 284.6 \ ({\rm kN/m})$

d)支持力安全率

 $F_{\rm S} = \frac{Q_u}{Q_{\rm V}} = \frac{324.4}{284.6} = 1.139 > 1.000 \sim \text{O.K.} \sim$

参考文献 1) 「道路橋示方書・同解説 IV下部構造編 平成 24 年 3 月、p. 302、p. 303」

4) 対策工の内的安定の検討

内的安定として、水平せん断、格子壁抜出しせん断、鉛直せん断の検討を行い、改良体 に生じるせん断応力が一軸圧縮強さ *q*_{ua}から求める設計に用いる許容せん断強さ *τ*_aを越えな いことを確認した。

水平せん断

改良地盤の水平せん断応力については、以下の式を用いて算出した。

$$\tau_{1} = \frac{H_{z} + H_{E} + P_{AHz} - P_{PHz}}{a_{p} \cdot B}$$

τ1 : 改良体に作用する水平せん断応力(kN/m²)

Hz:
検討する深度の上部の改良地盤に作用する慣性力(kN/m)

H_E:改良体上面の地盤に作用する慣性力(kN/m)

PAHz :検討する深度の上部の改良地盤に作用する主働側土水圧合力(kN/m)

P_{PHz}:検討する深度の上部の改良地盤に作用する受働側土水圧合力(kN/m)

図 5.4.13 改良地盤の水平せん断破壊

図 5.4.14 に示すように各深度の改良地盤における水平せん断応力分布を計算し、最大 せん断応力について許容値以内となるか照査する。

図 5.4.14 に示すように、水平せん断応力が最大となる地点は深度 5.0m 地点であるため、深度 5.0m 地点における改良地盤に作用する水平せん断応力の計算例を示す。

- ・検討する深度(5.0m)における改良地盤上面の盛土及び改良地盤の慣性力 H_z+H_E $H_z+H_E = \gamma \times H \times B \times k_{hr} = 18.0 \times (3.5+1.5) \times 4.0 \times 0.054 \times (1-0.03 \times 6.0) = 15.9 \text{ (kN/m)}$
- ・検討する深度(5.0m)における主働土圧合力 P_{AH}
 表 5.4.11 (①+②+③+④) より、P_{AH}=430.9 (kN/m)
- ・検討する深度(5.0m)における受働土圧合力 P_{PH}
 表 5.4.12 (①+②+③) より、P_{PH}=256.7 (kN/m)

・検討する深度(5.0m)における水平せん断応力τ1

$$\tau_1 = \frac{H_z + H_E + P_{AHz} - P_{PHz}}{a_p \cdot B} = \frac{15.9 + 430.9 - 256.7}{0.733 \times 4.0} = 64.8 \text{ (kN/m^2)}$$

$$au_1 = 64.8 \ (kN/m^2) < au_a = 200.0 \ (kN/m^2) \sim O.K. \sim$$

② 抜出しせん断

格子状改良の場合に主に盛土側からの土圧によって最も盛土側に位置する改良壁体 が抜出しせん断破壊しないよう、改良壁体に作用するせん断応力を下式により求め、 改良地盤のいずれの深度においても改良壁体に作用するせん断応力が設計に用いるせ ん断強さを超えていないことを確認した。

図 5.4.16 に示すとおり、本ケースにおいて格子壁に作用する合力が最大となる地点 は改良体底面深度である。ただし、根入れ長によって、せん断応力最大となる地点が 改良地盤底面または、液状化層下端深度となるため、最下端の液状化層下端深度(5.0m) および改良地盤底面深度(6.0m)において格子壁のせん断応力を算出し、最大せん断応力 が許容せん断応力以内となるか照査を行った。

・検討する深度が改良地盤底面の場合

$$\tau_2 = \frac{\left(H_{\mathrm{Tz}} + P_{\mathrm{AHz}} - P_{\mathrm{0Hz}}\right) \cdot l}{2bz}$$

・検討する深度が上記以外の場合

$$\tau_2 = \frac{\left(H_{\mathrm{Tz}} + P_{\mathrm{AHz}} - P_{\mathrm{0Hz}}\right) \cdot l}{2bz + bl}$$

ここに、

- τ2 : 改良壁体に作用する抜出しせん断応力(kN/m²)
- H_{Tz}:検討する深度の上部の改良壁体に作用する慣性力(kN/m)
- PAHz: :検討する深度の上部の改良地盤に作用する主働側土水圧合力(kN/m)
- P_{0Hz} :検討する深度の上部の改良壁体に格子内部から作用する静止土水圧合力 (kN/m)
 - 1 : 図 5.4.15 に示す対象とする改良壁体の堤防法線方向の長さ(m)
 - b : 改良壁体の厚さ(m)
 - z: 改良体上面からの検討位置の深度(m)

深度	Ē z	層 厚 h	単位 体積 重量	全上 載圧 σ _ν (z)	静水圧 u(z)	有効 上載圧 σ _ν ´ (z)	静止 土圧 係数 <i>K</i> 0	静止土水圧 $\sigma_h(z)=$ $K_0 \cdot \sigma_y'(z)+u(z)$	静止土	:水圧合力 P _{0hz} 照查地点
(m)	(m)	(kN/m ³)	(kN/m ²)	(kN/m ²)	(kN/m ²)	_	(kN/m ²)	()	xN/m)
0~	1.5	1.5	18.0	27.0	0.0	27.0	0.5	13.5	10.1	-
1.5~	5.0	3.5	18.0	90.0	35.0	55.0	0.5	62.5	133.0	$P_{0h (1.5 \sim 5.0m)}$ =133.0
5.0~	6.0	1.0	19.0	109.0	45.0	64.0	0.5	77.0	69.8	$P_{0h (1.5 \sim 6.0m)}$ =202.8

表 5.4.16 格子内部から作用する静止土水圧合力 P_{0Hz}の算定

a) 液状化層下端深度(5.0m)における格子壁の抜け出しせん断応力

・検討する深度(5.0m)の上部の改良壁体に作用する慣性力 H_{Tz}

 $H_{\text{Tz}} = W_z \times k_{\text{hrz}} = 0.8 \times 3.5 \times 18.0 \times 0.054 \times (1 - 0.03 \times 6.0) = 2.2 \text{ (kN/m)}$

- ※ ここで、改良地盤の慣性力の低減に用いる深度については、改良地盤中は地震動が 増幅しないと想定されるため、改良体底面深度をもちいる。
- ・検討する深度(5.0m)の上部の改良地盤に作用する主働側土水圧合力(kN/m)
 P_{AHz} = 398.1(kN/m) (表 5.4.11よりΣP_{AH}-(①+②+⑤+⑥))
- ・検討する深度(5.0m)の上部の改良壁体に格子内部から作用する静止土水圧合力(kN/m)

 $P_{0Hz} = 133.0 (kN/m)$ (表 5.4.16 より)

・検討する深度(5.0m)の上部の格子壁の抜出しせん断応力

$$\tau_{2}(5.0) = \frac{\left(H_{\text{Tz}} + P_{\text{AHz}} - P_{0\text{Hz}}\right) \cdot l}{2bz + bl} = \frac{\left(2.2 + 398.1 - 133.0\right) \times 1.6}{2 \times 0.8 \times 3.5 + 0.8 \times 1.6} = \frac{62.2 \,(\text{kN/m}^{2})}{2}$$

b) 改良地盤底面深度(6.0m)における格子壁の抜け出しせん断応力

- ・検討する深度(6.0m)の上部の改良壁体に作用する慣性力 H_{Tz} $H_{Tz} = W_z \times k_{hrz} = 0.8 \times 4.5 \times 18.0 \times 0.054 \times (1 - 0.03 \times 6.0) = 2.9$ (kN/m)
- ・検討する深度(6.0m)の上部の改良地盤に作用する主働側土水圧合力(kN/m) $P_{AHz} = 470.0 (kN/m) (表 5.4.11 より \Sigma P_{AH} - (①+②))$
- ・検討する深度(6.0m)の上部の改良壁体に格子内部から作用する静止土水圧合力(kN/m)

$$P_{0\text{Hz}} = 202.8 \text{ (kN/m)}$$
 (表 5.4.16 より)

・検討する深度(6.0m)の上部の格子壁の抜出しせん断応力

$$\tau_{2}(6.0) = \frac{\left(H_{\text{Tz}} + P_{\text{AHz}} - P_{0\text{Hz}}\right) \cdot l}{2bz} = \frac{\left(2.9 + 470.0 - 202.8\right) \times 1.6}{2 \times 0.8 \times 4.5} = \frac{60.0 \text{ (kN/m}^{2})}{2}$$

 $au_2(5.0) = 62.2 \ (kN/m^2) < au_a = 200.0 \ (kN/m^2) \sim O.K. \sim$

③ 鉛直せん断

図 5.4.17 に示すように改良地盤底面から作用する地盤反力によって鉛直にせん断破壊しないよう、改良壁体に作用するせん断応力 t,を以下の式により求め、改良地盤のいずれの位置においても改良壁体に作用するせん断応力が許容せん断応力以内となるか照査を行った。

図 5.4.17 鉛直せん断破壊

$$\tau_{v} = \frac{\left(P_{\rm PV} + Q_{\rm Vx} - W'_{\rm x} - W_{\rm Ex}\right) \cdot L_{\rm U1}}{D_{\rm T} L_{\rm T1}}$$

ここに、

- τ_v : 鉛直せん断応力(kN/m²)
- *P*_{PV} : 改良地盤の受働側に作用する土水圧合力の鉛直成分で、液状化層上部
 (*P*_{PV1})、液状化層(*P*_{PV2})、支持層(*P*_{PV3})の成分に分割し、*P*_{PV1}、*P*_{PV3}に
 発揮割合fを乗じる (kN/m)
- Qvx : 改良地盤前趾から鉛直せん断を検討する断面までの地盤反力の合力(kN/m)
- W'x : 改良地盤前趾から鉛直せん断を検討する断面までの改良地盤の有効重
 量(kN/m)
- W_{Ex}: 改良地盤前趾から鉛直せん断を検討する断面までの改良地盤上面に載る盛土の全重量(kN/m)
- Lu1 :堤防法線方向の改良地盤1ユニットの長さ(ブロック状の場合、1)(m)
- *D*_T : 改良地盤の高さ (m)
- LT1
 :堤防法線方向の改良地盤1ユニットのうち改良壁体の長さ(ブロック 状の場合、1)(m)

図 5.4.18 堤防横断面方向の改良地盤における鉛直せん断力分布図

図 5.4.18 のように、鉛直せん断力が最大となる横断位置は改良地盤前趾から有効幅である 0.762m の地点であり、改良地盤前趾から 0.762m の位置において改良地盤に作用する鉛直せん断応力を算出した。

・検討する断面(改良地盤前趾から 0.762m)までの地盤反力の合力 Qvx

 $Q_{\rm vx} = q \times x = (284.6/0.762) \times 0.762 = 284.6 \,(\rm kN/m)$

- ・検討する断面(改良地盤前趾から 0.762m)までの改良地盤の有効重量 W'_x $W'_x = W'/B \times x = 145.1/4.0 \times 0.762 = 27.6$ (kN/m)
- ・検討する断面(改良地盤前趾から 0.762m)までの改良地盤上面に載る盛土の重量 W_{Ex} $W_{\text{Ex}} = \gamma_{\text{E}} \times D_{\text{WL}} \times x = 18.0 \times 1.5 \times 0.762 = 20.6 \text{ (kN/m)}$
- ・検討する断面(改良地盤前趾から 0.762m)における鉛直せん断応力

$$\tau_{v} = \frac{\left(P_{PV2} + f(P_{PV1} + P_{PV3}) + Q_{Vx} - W'_{x} - W_{Ex}\right) \cdot L_{U1}}{D_{T}L_{T1}}$$

=
$$\frac{\left(0.0 + 0.746 \times (0.0 + 0.0) + 284.6 - 27.6 - 20.6\right) \times 2.4}{4.5 \times 0.8}$$

=
$$\frac{157.6 \text{ (kN/m}^{2})}{2}$$

 au_{v} = 157.6 (kN/m²) < au_{a} =200.0 (kN/m²) ~ au O.K. ~

5) 安定検討結果(まとめ)

改良体の安定検討結果一覧表を表 5.4.17 に示す。

	検討項目	単位	検討結果		
外的安定	滑動		$F_{\rm S} = 1.211 > 1.0$	O.K.	
	支持力	—	$F_{\rm S} = 1.128 > 1.0$	O.K.	
内的安定	水平せん断	kN/m ²	$\tau_1 = 64.8 < \tau_a = 200.0$	O.K.	
	格子壁抜出しせん断	kN/m ²	$\tau_2 = 62.2 < \tau_a = 200.0$	O.K.	
	鉛直せん断	kN/m ²	$\tau_{\rm v} = 157.6 < \tau_{\rm a} = 200.0$	O.K.	

表 5.4.17 安定検討結果一覧表

5.4.2 耐震性能照查

5.4.1 で設定した対策工を施した堤防のレベル2 地震動に対する耐震性能について有限要素 法による自重変形解析により照査を行った。耐震性能を満足しない場合には、対策工諸元を見 直し、再度照査を行い、耐震性能を満たす対策工諸元を決定する。

(1) 対策工諸元

改良地盤(改良体とその間の未改良部)を弾性体としてモデル化して変形解析を実施した。 改良地盤を表す弾性体の定数を、対策工諸元から以下の通り設定した。

項目		諸元	備考
	せん断剛性	16,667 kN/m ²	$q_{\rm ua} = 400 {\rm kN/m^2}$
	ポアソン比	0.200	
	単位体積重量	18.0 kN/m ³	

表 5.4.18 対策工諸元

なお、固化改良体のせん断弾性係数は以下の式にて設定した。

 $G = (100 \times q_{ua}) / (2 \times (1 + v))$

ここに、

G : せん断弾性係数

qua: 一軸圧縮強度

v : ポアソン比

(2) 耐震性能照査による対策工の検討

対策工諸元の設定において決定した対策工をモデル化した堤防断面において、変形解析を行った結果、沈下後堤防高が照査外水位を下回ったため、沈下後堤防高が照査外水位以上となる 対策工諸元を変形解析により検討した。対策工諸元設定の流れと決定した諸元を次頁に示す。

変形解析による対策工の検討については、改良体の幅、天端の高さ、根入れ、堤体下部への 改良幅を変化させて耐震性能を満足し且つ最小改良規模となる諸元を設定した。

表 5.4.19 対策工諸元設定の流れと決定諸元

対策工諸元設定(外的及び内的安定検討等)によって決定した対策工諸元(表 5.4.19中①ケース) について変形解析を行った結果を以下に示す。

表 5.4.20 耐震性能照査結果(その1)
表 5.4.19 中①ケースを基に、耐震性能を満足するように対策工諸元を見直した表 5.4.19 中②ケ ースについて変形解析を行った結果を以下に示す。

表 5.4.21 耐震性能照査結果(その2)

(4) 安定検討による対策工諸元の確認

耐震性能照査の結果、諸元の見直し(改良体の位置を盛土側に移動、改良体上面位置 の変更)を行ったため、見直し後の諸元に対して内的・外的安定の検討を実施した。そ の結果、内的・外的安定の全ての照査項目で照査基準を満足する結果であった。

	A	2000		
	検討項目	単位	検討結果	
从的实空	滑動		$F_{\rm S} = 1.188 > 1.0$	O.K.
外的女化	支持力		$F_{\rm S} = 1.015 > 1.0$	O.K.
	水平せん断	kN/m ²	$\tau_1 = 73.6 < \tau_a = 200.0$	O.K.
内的安定	格子壁抜出しせん断	kN/m ²	$\tau_2 = 61.8 < \tau_a = 200.0$	O.K.
	鉛直せん断	kN/m ²	$\tau_{\rm v} = 161.5 < \tau_{\rm a} = 200.0$	O.K.

表 5.4.22 安定検討結果一覧表

5.4.3 浸透安全性照查

前項までに決定した対策工を入れた断面に対して、「河川堤防の構造検討の手引き」に準 じた検討を行い、液状化対策工によって現況に対して堤防の浸透安全性が有意に低下しな いことを照査した。

(1) 地盤モデルとパラメータ

地盤モデルとパラメータは5.2.1に示した通りである。5.2.1以外のパラメータは「河 川堤防の構造検討の手引き」に準拠した。

固結工の透水係数は 1×10⁻⁸(m/sec)とした。 浸透流解析に用いるメッシュは、変形解析のメッシュを準用した。

(2) 外力の設定

詳細に用いる降雨、洪水の外力は5.2.6に示した通りである。

(3) 解析結果

現況解析の結果と対策後の結果を下表に示す。

対策後(固結)の局所動水勾配(水平)が0.442から0.566に増加(安全性が低下)したため、補助対策工の検討を行った。ここではドレーン工を補助対策工に選定し、浸透安全性の照査を行った結果、局所動水勾配(水平)が0.377まで減少し、その他の項目 も全て現況を上回る結果となった。

検討な、ス	局所動	水勾配	円弧すべ	り安全率
使 前 ク ー ス	鉛直 iv	水平 ih	川表 Fs	川裏 Fs
現 況	0.346	0.442	0.800	0.732
固 結	0.335	0.566	0.784	0.731
固 結+ドレーン	0.232	0.377	0.802	0.868

表 5.4.23 浸透安全性の照査結果一覧

-103-

第6章 計算例4:固結工法による対策(その2)

6.1 設計手順

図 6.1.1 に固結工法の設計手順を示す。対策工の初期諸元は、ブロック状または格子状 の改良体の外的安定および内的安定計算結果より諸元を設定し、これに対してレベル2地 震動に対する耐震性能照査(有限要素法による自重変形解析)を実施する。このとき、所 定の耐震性能を満足しない場合には、改良幅を広げる等により対策工諸元を見直し、所定 の性能を満足する諸元を設定する。具体的には、改良幅を広げる、もしくは、根入れ長を 長くすることで最適諸元を求めることになるが、これらは現場条件や施工条件などを総合 的に判断して設定することが必要である。

次に、対策工実施により堤防の浸透安全性が有意に低下しないことを照査する。浸透安 全性が有意に低下する場合には、ドレーン工等の補助工法を検討したり、場合によっては 対策工法を変更する必要もある。

図 6.1.1 固結工法の設計手順

6.2 設計条件

6.2.1 地盤条件

(1) 基本諸元

図 6.2.1 に耐震性能照査の対象とする堤体および地盤構造を示す。表 6.2.1 には設定した各層の地盤定数を示す。

液状化層の間に非液状化層(粘性土層)が狭在するモデルである。

図 6.2.1 耐震性能照査対象とする堤体および地盤構造

土層区分	土層厚 (m)	層区分	深度 (m)	N 値	[平均值] N值	土の単位 体積重量 γ(kN/m ³)	[平均値] 細粒分 含有率 Fc(%)	土の 粘着力 c (kN/m ²)	土の 内部摩擦角 <i>φ</i> ()	透水係数 <i>k</i> (m/sec)	
堤体	5.0	砂質土	-	-	5.0	18.0	35	0	30	$1.0 imes 10^{-6}$	
沖積砂質土 As1	5.0	 砂質土 砂質土 砂質土 砂質土 	1.3 2.3 3.3 4.3	2 3 5 4	3.5	18.0	22	0	30	1.0×10^{-5}	
沖積粘性土 Ac1	3.0	<u>粘性土</u> 粘性土 粘性土	5.3 6.3 7.3	2 1 1	1.3	17.0	65	堤体直下:50 非堤体直下: 40	0	$1.0 imes 10^{-8}$	
沖積砂質土 As2	5.0	 砂質土 砂質土 砂質土 砂質土 砂質土 砂質土 	8.3 9.3 10.3 11.3 12.3	6 10 12 15 10	10.6	19.0	18	0	30	1.0×10^{-5}	
沖積粘性土	5.0	<u>粘性土</u> 粘性土 粘性土 粘性土 粘性土	13.3 14.3 15.3 16.3 17.3	4 2 1 1 2	16	17.0	87	55	0	1.0×10^{-8}	
Ac2	5.0	<u>粘性土</u> 粘性土 粘性土 粘性土	18.3 19.3 20.3 21.3 22.3	2 1 2 2 6	1.0	17.0		70	0	1.0 × 10	
洪積礫質土 Dg	-	礫質土礫質土礫質土	23.3 24.3 25.3	35 50 50	50.0	21.0	-		40	1.0×10^{-4}	

表 6.2.1 地盤条件

(2) 地盤種別の判定

指針に基づき地盤種別の判定を行った。表 6.2.2 に地盤種別の判定結果を示す。洪積礫 質土層 Dg を耐震性能照査上の基盤面とし地盤の特性値 T_G を算出すると、 $T_G = 0.727(s)$ とな るため、本地盤はIII種地盤と判定される。

地層区分	地層厚 Hi (m)	地層の 平均せん断 波速度 Vsi(m/s)	4Hi/Vsi (s)	備考
沖積砂質土 As1	5.0	120	0.167	
沖積粘性土 Ac1	3.0	110	0.109	冬届のせん
沖積砂質土 As2	5.0	170	0.118	街波速度 は、PS検層 にて確認さ
沖積粘性土 Ac2	10.0	120	0.333	れている
洪積礫質土 Dg	-	300		
		4Σ Hi/Vsi =	0.727	(Ⅲ種地盤)

表	622	耐震性能昭香上の地盤種別の判定
11	0. 2. 2	前皮住能派且上外心血住的外针足

6.2.2 入力地震動条件

入力地震動は、指針に基づき以下のように設定した。

1) 対策工諸元設定用震度

 $k_h = c_Z \times k_{G0}$

- kh : 対策工諸元設定用水平震度(0.18)
- kG0 : 地盤種別に応じた標準水平震度(Ⅲ種地盤:0.18)
- cz : 地域別補正係数(地域区分 A2:1.0)

2) レベル2地震動

 $k_{hgL} = c_Z \times k_{hgL0}$

- k_{hgL}: 液状化の判定に用いる地盤面の水平震度 (レベル 2-1 地震動: 0.40、レベル 2-2 地震動: 0.60)
- k_{hgL0}: 液状化の判定に用いる地盤面の水平震度の標準値

(Ⅲ種地盤、レベル 2-1 地震動:0.40、レベル 2-2 地震動:0.60)

cz : 地域別補正係数(地域区分 A2:1.0)

地震重	勆	地盤 種別	k _{G0} k _{hgL0}	地域 区分	Cz	k_h k_{hgL}
対策工記 設定用寫	者元 §度		018			0.18
レベル2	L2-1	Ⅲ種	0.40	A2	1.0	0.40
地震動	L2-2		0.60			0.60

表 6.2.3 入力地震動

6.2.3 液状化判定

指針に基づき液状化判定を実施した。図 6.2.2、表 6.2.4、表 6.2.5 に対策工諸元設定 用震度およびレベル 2 地震動に対する液状化判定結果を示す。これより、沖積砂質土 As1、 As2 が対策工諸元設定用震度およびレベル 2 地震動に対する液状化層となる。

図 6.2.2 液状化に対する抵抗率 FLの深度方向分布

										対策工諸	元設定用震度	11.57
土層区分	土層厚	層区分	溪)	N値	層平均 M值	土の単位 体積重量	維 行 本 奉	繰返し三軸 強度比	地震時せん断	動的せん断	液状化に 対する	当合作用
					<u>1</u>	γ (kN/m ³)	FC (%)	RL	応力比 L	強度比 <i>R</i>	抵抗率 FL	「「「「「」」
		砂質土	1.3	2.0		18	20	1	1			1
沖積砂質土	0 4	砂質土	2.3	3.0	u c	18	25	0.208	0.215	0.207	0.96	完全液状化層
A_{S1}	0.0	砂質土	3.3	5.0	C	18	18	0.223	0.245	0.223	16.0	完全液状化層
		砂質土	4.3	4.0		18	23	0.213	0.264	0.213	0.80	完全液状化層
十十十十十十十十十		粘性土	5.3	2.0		17	60	-	1	,	-	
1110月14日11年11	3.0	粘性土	6.3	1.0	1.3	17	70	-	-		,	
100		粘性土	7.3	1.0		17	65	-	-	-	-	-
		砂質土	8.3	6.0		19	33	0.253	0.294	0.253	0.86	完全液状化層
计专用		砂質土	9.3	10.0		19	17	0.252	0.293	0.252	0.86	完全液状化層
11位10月上	5.0	砂質土	10.3	12.0	10.6	19	14	0.255	0.291	0.254	0.87	完全液状化層
797		砂質土	11.3	15.0		19	10	0.258	0.288	0.257	0.89	完全液状化層
		砂質土	12.3	10.0		19	18	0.240	0.285	0.239	0.83	完全液状化層
		粘性土	13.3	4.0		17	73	-	ı	ı		,
		粘性土	14.3	2.0		17	83	-	-	-		
	5.0	粘性土	15.3	1.0		17	06	1	'	1	1	
		粘性土	16.3	1.0		17	93	-	-	-	-	
沖積粘性土		粘性土	17.3	2.0	16	17	86	'	'	-		
Ac2		粘性土	18.3	2.0	0.1	17	8	'	'	-		
		粘性土	19.3	1.0		17	91	1	1	1	1	
	5.0	粘性土	20.3	2.0		17	87	-			ı	
		粘性土	21.3	2.0		17	85	'	-	-	-	
		粘性土	22.3	6.0		17	65	-	-	-	-	-
小十年世纪的历史一上		礫質土	23.3	35.0		21	40	-	-	-	-	
伏惧铼具上 D5		礫質土	24.3	50.0	50.0	21	15	1	·	I	ı	ı
n N		礫質土	25.3	50.0		21	10	-	-	-	-	-

表 6.2.4 液状化判定結果(対策工諸元設定用震度)

		判定結果			完全液状化層	完全液状化層	完全液状化層	-	-	-	完全液状化層	完全液状化層	完全液状化層	完全液状化層	完全液状化層	-	-	-	-	-	-	-	-	-		-	-	
2-2地震動	液状化に 対する	抵抗率	F_{L}	1	0.39	0.38	0.33	-			0.38	0.38	0.39	0.40	0.36	-		,	'							-	,	
イシー	動的 せん断	強度比	R		0.281	0.313	0.293	-	-	-	0.381	0.378	0.385	0.391	0.350	-	-	-	-		-		-	-		-		
	地震時せん断	応力比	L	I	0.718	0.818	0.879	-		-	0.979	0.975	696.0	0.96	0.95	-								,		-		
ţ	液状化に 対する	抵抗率	F_{L}	I	0.43	0.40	0.36	-		•	0.38	0.38	0.39	0.40	0.37	-							-			-		
ベル2-1地震重	動的 せん断	通度比	R		0.207	0.223	0.213	-	-	-	0.253	0.252	0.254	0.257	0.239	-	-	'			'		-	-		-	'	
Ż	地震時せん断	応力比	L		0.479	0.546	0.586	-	'	-	0.653	0.650	0.646	0.640	0.633	-	-	'	'		'	'	-	-		-	'	
	繰返し三軸 強度比	$R_{ m L}$			0.208	0.223	0.213	-		-	0.253	0.252	0.255	0.258	0.240	-	-		-		'		-	-		-	'	-
	舗 約 合 本 索	FC (%)		20	25	18	23	60	70	65	33	17	14	10	18	73	83	06	93	86	28	91	87	85	65	40	15	10
	土の単位 体積重量	γ (kN/m ³)		18	18	18	18	17	17	17	19	19	19	19	19	17	17	17	17	17	17	17	17	17	17	21	21	21
	層平均	N 個				0.0			1.3				10.6						•	-	1.0				2		50.0	<u> </u>
	N値	ļ		2.0	3.0	5.0	4.0	2.0	1.0	1.0	6.0	10.0	12.0	15.0	10.0	4.0	2.0	1.0	1.0	2.0	2.0	1.0	2.0	2.0	6.0	35.0	50.0	50.0
	深度	(II)		1.3	2.3	3.3	4.3	5.3	6.3	7.3	8.3	9.3	10.3	11.3	12.3	13.3	14.3	15.3	16.3	17.3	18.3	19.3	20.3	21.3	22.3	23.3	24.3	25.3
	層区分			砂質土	砂質土	砂質土	砂質土	半种株	粘性土	粘性土	砂質土	砂質土	砂質土	砂質土	砂質土	土地株	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	礫質土	礫質土	礫質土
	土層厚	(II)			04	0.0			3.0				5.0					5.0					5.0					
	土層区分				沖積砂質土	As1		十十十十十十十十		174		计在地址 化化 上	1世頃10月工	794						沖積粘性土	Ac2					十	供視標員工	ы М

表 6.2.5 液状化判定結果(レベル2地震動)

6.2.4 照査基準

レベル2地震動に対して、地震後の堤防高さが以下の外水位を下回らないことを照査する。

照查外水位 : EL.+3.0m

6.2.5 対策工諸元設定上の制約条件

図 6.2.3 に対策工諸元設定上の制約条件を示す。実際の検討断面では現地状況や施工条件等から様々な制約条件が設定される。本計算モデルでは、図に示すように、対策工は、 堤防のり尻より 5m の位置から外側に実施することを条件として諸元を設定する。

図 6.2.3 対策工諸元設定上の制約条件

6.2.6 浸透安全性の評価に用いる外力

対策後に浸透安全性が現況に比べ有意に低下しないことを評価するために、「河川堤防の 構造検討の手引き」に準じて実施する。

ここでは、降雨、洪水の外力を以下の通りとした。

図 6.2.4 設定した降雨、洪水波形

6.3 現況の照査

現況堤防のレベル2地震動に対する耐震性能照査は、有限要素法による自重変形解析(静 的照査法)により実施した。

なお、解析モデルの右側地表に浮力補正バネを設定したのは、低水河岸の過剰な変形を 抑制するためである。仮想バネはバネ下面の地盤の一要素幅に単位体積重量を乗じて設定 した。

(1) 解析モデル

図 6.3.1 に解析モデルおよび設定パラメータを示す。また、解析上の地下水位および解 析モデルの境界条件は以下の通り設定する。

[地下水位]

先に示した地下水位から一律 0.5m 上側に設定することとし、EL.-1.0m とする。

[境界条件]

側方境界 : 付加地盤(左右両側共 50m)および鉛直ローラ(X 固定) 底面境界 : 固定(X、Y 固定)

※粘性土の変形係数 Eoは、砂質土と粘性土の微小ひずみレベルでのせん断剛性の差(比率)に基づき、Eo=2800N ではなく 4400N(N:N 値)として設定。 ※ダイレイタンシー角 ψ は、ψ= φ - 20(15°を上限値)で設定。

図 6.3.1 解析モデル

(2) 耐震性能照查結果

図 6.3.2、図 6.3.3 に現況堤防のレベル 2 地震動に対する耐震性能照査結果を示す。これより、レベル 2-1 地震動およびレベル 2-2 地震動ともに、地震後の堤防高さが照査外水位を下回るため、対策工の検討が必要となる。

[照査結果]

レベル 2-1 地震動	:	(地震後堤防高さ)EL.+1.56m	<	(照查外水位)EL.+3.00m	(NG)
レベル 2-2 地震動	:	(地震後堤防高さ)EL.+1.34m	<	(照查外水位)EL.+3.00m	(NG)

図 6.3.2 レベル 2-1 地震動に対する照査結果

図 6.3.3 レベル 2-2 地震動に対する照査結果

6.4 対策後の照査

6.4.1 対策工諸元の設定

対策工の諸元の設定では、改良範囲の設定、改良仕様の設定を行った上で、外的安定 と内的安定を満足するような諸元を設定する。図 6.4.1 に示す改良範囲は、外的安定、 内的安定も含めた手順を経て設定されたものである。

(1) 改良範囲の設定

手引き 6.4 改良範囲の設定では、対策工諸元設定用震度に対する液状化層から支持層 への一定の根入れを確保することと、のり尻直下を改良範囲に含めることが示されてい る。手引きの枠外には、改良幅の目安も示されている。

本ケースでは、(完全)液状化層は EL.-1.5m~-5.0m と-8.0m~-13.0m に分布することから、EL.-13.0m 以深の改良体が根入れ部となる。液状化層厚は、3.5m + 5.0m=8.5m となる。 根入れ深さは、1.0m または液状化層厚の 0.1 倍のうち小さい方の 0.85m を 0.5m 単位で切り上げた 1.0m 以上で検討を行った。

また、のり尻直下が改良範囲に含まれており(正確には、接する)、改良高さの6割(12.5m×0.6=7.5m)以上という改良幅の目安も確保されている。

図 6.4.1 改良範囲

改良範囲

- ・改良地盤天端標高: EL.-1.5 m(地下水位)
- ・改良高:12.5 m
- ・改良幅:8.0m > (目安)7.5m (OK)

- ・根入れ:1.0 m > (目標) 0.85m (OK)
- ・のり尻直下を含む (OK)

(2) 改良仕様の設定

改良強度、改良形状は、改良範囲との組み合わせで、内的安定及び外的安定を満足す る条件が変わる。この中から、現場条件も加え、最も合理的な改良強度、改良形状を選 択することになる。

その際、改良形状は施工機の仕様に制約される部分が大きいため、ある程度、施工機 を想定しながら、設計を進める必要がある。

手引きでは、格子間隔は液状化層厚の5割~8割(4.25m~6.80m)が上限、改良率も 50%以上とされており、これらを満足していることが確認できる。

検討用モデルの壁厚について、本計算例では改良部面積の矩形換算により設定した。 ただし、改良径が大口径となる場合、重複部の壁厚が改良直径に比べ極端に細くなり、 鉛直せん断および抜出しせん断破壊に対して弱部となることが想定される。その場合、 鉛直せん断および抜出しせん断照査については重複部の壁厚で照査する方法が考えられ る。

図 6.4.2 格子状改良配置図

1 ユニットに占める堤防法線方向の改良体の長さ	L_{T1}	=0.8(m)
堤防法線方向の改良壁の厚さ	l	=0.8(m)
堤防横断方向の改良地盤1ユニットの長さ	L_{U2}	=8.0(m)
1 ユニットに占める堤防横断方向の改良体の長さ	L_{T2}	=3.2(m)
堤防横断方向の改良壁の厚さ	b	=0.8(m)

また、改良強度として、一軸圧縮強さ q_{ua} を 400kN/m²とした。設計に用いるせん断強さ τ_a は以下の通りとなる。

$$\tau_a = 1/2 \cdot q_{\mu a} = 1/2 \cdot 400 = 200 \text{ (kN/m}^2)$$

(3) 内的安定、外的安定の検討

1) 照査項目および照査基準値

各照査項目の許容安全率及び許容応力は下表に示す通りである。

枪	検討項目	照査基準値
从的空空封管	滑動に対する照査	$F_{\rm S} = 1.0$
21的女化計昇	支持力に対する照査	$F_{\rm S} = 1.0$
	水平せん断	発生せん断応力 < せん断強さ τ_a
内的安定計算	格子壁抜出しせん断	発生せん断応力 < せん断強さ τ_a
	鉛直せん断	発生せん断応力 < せん断強さ τ_a

表 6.4.1 照査項目および照査基準値

2) 改良体に作用する土水圧の算定

① 外力の算定(改良地盤)

改良体に働く慣性力は表 6.4.2 に示すように算出した。

	項目	計算式	計算値
W:	改良地盤の全重量	W _t :改良体の全重量=改良体の単位体積重量×体積	
	$(W_{\rm t}+W_{\rm u})$	$= \gamma_t \times V_t = 18.0 \times (8.0 \times 12.5) \times 0.50 = 900.0$	
		Wu:未改良部の全重量=未改良部の単位体積重量×体積	
		$= \gamma_{u} \times V_{u} = \{18.0 \times (8.0 \times 3.5) + 17.0 \times (8.0 \times 3.0) + 19.0 \times (8$	
		$5.0+17.0\times(8.0\times1.0)$ }×(1-0.50)=904.0	
		$W = W_{\rm t} + W_{\rm u} = 1804.0$	1804.0
			kN/m
$W_{\rm E}$	改良地盤の上面に	$=\gamma \times V = 18.0 \times (8.0 \times 1.5) = 216.0$	216.0
	載る盛土の重量		kN/m
H:	改良地盤の慣性力	改良地盤の全重量×設計水平震度×動的荷重低減係数	
		×深度方向の低減係数	
		$= W \cdot k_{\rm h} \cdot \alpha_{\rm dS} \cdot (1 - 0.03 \cdot H_{\rm t})$	
		$=1804.0 \times 0.18 \times 0.3 \times (1-0.03 \times 14.0) = 56.501$	56.5
			kN/m
$H_{\rm E}$:	改良地盤の上面に	改良地盤の上面に載る盛土の重量×設計水平震度×動	
	載る盛土の慣性力	的荷重低減係数×深度方向の低減係数	
		$= W \cdot k_{\rm h} \cdot \alpha_{\rm dS} \cdot (1 - 0.03 \cdot H_{\rm t})$	
		$=216.0 \times 0.18 \times 0.3 \times (1-0.03 \times 14.0) = 6.765$	6.8
			kN/m

表 6.4.2 改良体の慣性力

備考

※ 改良体の単位体積重量については、工法や現地地盤条件によって異なるため、実際の設計においては採用する工法および現地地盤条件を基に設定するものとする。本計算例では現地盤相当としてγt=18.0kN/m³を用いることとした。

※ 水平震度の深度方向の低減係数に用いる H_tは地表面からの深度とする。

※ 改良地盤上面に載る盛土の慣性力の算定においては、改良地盤上面に載る盛土が改良地盤と 一体で挙動すること、および改良地盤では振動が大きく増幅しないことが考えられるため、 水平震度の深度方向の低減計算に用いる深度は、改良体底面深度とする。ただし、盛土が高 い場合等、周囲地盤の挙動の影響が大きいと考えられる場合には、別途考慮してもよい。

外力の算定(上載荷重)

本ケースにおける盛土による荷重は、図 6.4.3 に示すように盛土全体の重量をのり尻間の距離で除して算定する。改良体が盛土の下面に入る場合は、盛土全重量から改良体上部の重量は除き、のり尻間距離からも盛土下面に入る距離を除くこととする。

- ・盛土断面積 : (5.0+25.0)×5.0/2 = 75.0 (m²)
- ・盛土全重量 : $\gamma_t \times A = 18.0 \times 75.0 = 1350.0$ (kN/m)
- ・上載荷重(盛土平均荷重): 盛土重量 ÷ 平均荷重算定距離

 $= 1350.0 \, / \, 25.0 = 54.0 \quad (kN/m^2)$

図 6.4.3 盛土荷重算出範囲

③ 液状化判定

土圧算定のために、盛土荷重を考慮した液状化判定を実施した。その結果を表 6.4.4 に示す。主働側については、盛土荷重による上載圧の影響があるため、固結工法におい ては、上載荷重(盛土平均荷重)を加えて地震時せん断応力比Lを算出し、液状化判定 を行った。

N值 土質 深度 N_{I} N_a CW FC σ_{v}' L R F_L 平均 F_L σ_v r_d G.L.-(m) 回 _ _ % 口 口 kN/m² kN/m² _ _ 1.3 2 砂質土 3.64 5.68 1 20 77.4 77.4 0.981 3 砂質土 4.93 95.4 87.4 0.966 0.190 0.207 1.091 2.3 1 25 8.63 5 砂質土 113.4 95.4 0.951 0.203 3.3 7.63 10.32 1 18 0.223 1.097 4 砂質土 5.70 9.23 23 131.4 103.4 0.936 0.214 0.213 0.995 1.061 4.3 1 2 粘性土 5.3 2.68 60 149.1 111.1 0.921 0.222 1 1.27 70 166.1 0.229 粘性土 118.1 0.906 6.3 _ 1 粘性土 7.3 1.20 65 183.1 125.1 0.891 0.235 8.3 6 砂質土 6.86 14.01 1 33 200.7 132.7 0.876 0.238 0.253 1.061 10.78 9.3 10 砂質土 13.87 17 219.7 0.861 0.240 1.049 1 141.7 0.252 10.3 12 砂質土 12.238 14.199 14 238.7 150.7 0.8455 0.241 0.254 1.054 1 11.3 15 砂質土 14.513 14.513 10 257.7 159.7 0.8305 0.241 0.257 1.065 1 12.3 10 砂質土 9.2041 12.317 18 276.7 168.7 0.8155 0.241 0.239 0.993 1.045 1

表 6.4.3 主働側液状化判定

表 6.4.4 液状化判定結果一覧

上 屋	主働側	J	受働側		
	$F_{ m L}$	判定	$F_{ m L}$	判定	
表 層 (EL.±0.0m~EL1.5m)	地下水位以浅	非液状化層	地下水位以浅	非液状化層	
1層目砂質土層 (EL1.5m~EL5.0m)	平均 F _L =1.061	準液状化層	平均 F _L =0.890	完全 液状化層	
2層目砂質土層 (EL8.0m~EL.13.0m)	平均 F _L =1.045	準液状化層	平均 F _L =0.862	完全 液状化層	

④ 土圧係数

各層の土圧係数を算定する。

算定する際に用いる震度には、対策工諸元設定用震度に低減係数 α_{ds} を乗じた以下の値を用いた。

 $k_{\rm h} = 0.18 \times 0.3 = 0.054$

また、受働土圧係数の算定においては、壁面摩擦角 δ が大きくなる場合、受動土圧が 過大となるため、受働側の壁面摩擦角は $\delta=0^{\circ}$ として適用する。

・主働側

表 0.4.5 王衝側谷僧の土圧係

計算深度	計算式	土圧係数
	非液状化層のため、「地震時の主働土圧係数」を求める。	
表層	地震時、水位以浅、砂質土	
(地下水以浅)	$\phi = 30^{\circ}, \ \delta = 15^{\circ}, \ k_{\rm h} = 0.054, \ \theta = \tan^{-1} k_{\rm h} = 0.054 (rad)$	
EL.±0.0m ∼ EL1.5m	$K_{\rm EA} = \frac{\cos^2(\phi - \theta)}{\cos\theta \cdot \cos(\delta + \theta) \cdot \left\{1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \theta)}{\cos(\delta + \theta)}}\right\}^2} \cdot \cos\delta$	$K_{\rm EA} = 0.324$
	準液状化層のため、「常時主働土圧」および「過剰間隙水圧を考慮	
	した地震時の王働土圧係数」を求める。 一世主働土圧 4 - 200 5 - 150	
	市时土間工工、 φ -30, δ -13	
	$K_{\rm A} = \frac{\cos^2 \phi}{\cos \delta \cdot \left\{ 1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin \phi}{\cos \delta}} \right\}^2} \cdot \cos \delta$	$K_{\rm A} = 0.291$
1層目砂質土層	過剰間隙水圧を考慮した地震時の主働土圧係数	
(準液状化層)	地下水位以深のため見かけの震度 kh'を用いる。	
	$k_{\rm h} = 0.054, \ q' = 54.0 \ {\rm kN/m^2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
EL1.5m ~	$k_{h}' = \frac{\gamma_{1}h_{1} + \gamma'_{2}h_{2} + \gamma_{w}h_{2} + q'}{\gamma_{1}h_{1} + \gamma'_{2}h_{2} + q'}k_{h} = 0.071, \theta = \tan^{-1}k_{h}' = 0.071 \text{(rad)}$	
EL5.0m	$r_{ m u}=F_{ m L}^{-7}=0.661$ ($r_{ m u}$:過剰間隙水圧比), $\phi=30^\circ$ より	
	$\tan \phi' = (1 - r_u) \cdot \tan \phi = 0.196, \sharp \circ \zeta \phi' = 0.194 \text{ (rad)}$	
	$\delta = \phi/2 = 15^{\circ}, \ \delta' = (\phi'/\phi)\delta = (0.194/0.524) \times 0.262 = 0.097 \text{ (rad)}$	
	$K_{\rm EA}' = \frac{\cos^2(\phi' - \theta)}{\cos \theta \cdot \cos(\delta' + \theta) \cdot \left\{ 1 + \sqrt{\frac{\sin(\phi' + \delta') \cdot \sin(\phi' - \theta)}{\cos(\delta' + \theta)}} \right\}^2} \cdot \cos \delta'$	$K_{\rm EA}' = 0.706$

	「地震時の主働土圧係数」を求める。	
	$\phi = 0, \ \delta = 0, \ k_{\rm h} = 0.054,$	
中間粘性土層	$k_{\rm h}' = \frac{\gamma_1 h_1 + \gamma'_2 h_2 + \gamma_w h_2 + \dots + q'}{k_{\rm h}} k_{\rm h} = 0.081$	
(非液状化層)	$\gamma_1 h_1 + \gamma'_2 h_2 + \cdots + q'$	
EL5.0m	$\theta = \tan^{-1} k_{\rm h}' = 0.081 ({\rm rad})$	
\sim	$\cos^2(\phi - \theta)$	
EL8.0m	$K_{\rm EA} = \frac{\cos(\psi + \delta)}{\left(-\frac{\sin(\phi + \delta)}{\sin(\phi + \delta)}\right)^2} \cdot \cos\delta$	
	$\cos\theta \cdot \cos(\delta + \theta) \cdot \left\{ 1 + \sqrt{\frac{\sin(\psi + \theta) \cdot \sin(\psi - \theta)}{\cos(\delta + \theta)}} \right\}$	$K_{\rm EA} =$
		1.007
	準液状化層のため、「常時主働土圧」および「過剰間隙水圧を考慮	
	した地震時の主働土圧係数」を求める。	
	常時主働土圧、φ=30°, δ=15°	
	$\cos^2 \phi$	
	$K_{\rm A} = \frac{\cos \varphi}{\left(- \left[\sin(\varphi + \delta) \sin \varphi \right]^2 \right)^2} \cdot \cos \delta$	
	$\cos \delta \cdot \left\{ 1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin \phi}{\cos \delta}} \right\}$	$K_{\rm A} =$
		0.291
2層目砂質土層	過剰間隙水圧を考慮した地震時の主働土圧係数	
(準液状化層)	地下水位以深のため見かけの震度 kh'を用いる。	
	$k_{\rm h}$ =0.054, q' =54.0 kN/m ² より	
EL8.0m \sim	$k_{\rm h}' = \frac{\gamma_1 h_1 + \gamma'_2 h_2 + \gamma_w h_2 + \dots + q'}{\gamma_1 h_1 + \gamma'_2 h_2 + \dots + q'} k_{\rm h} = 0.089, \theta = \tan^{-1} k_{\rm h}' =$	
EL13.0m	0.089(rad)	
	$r_{ m u}=F_{ m L}^{-7}=0.735$ ($r_{ m u}$:過剰間隙水圧比), $\phi=30^{\circ}$ より	
	$\tan \phi' = (1 - r_u) \cdot \tan \phi = 0.153, \sharp \sim \zeta \phi' = 0.152 \text{(rad)}$	
	$\delta = \phi/2 = 15^{\circ}$	
	$\delta' = (\phi'/\phi)\delta = (0.152/0.524) \times 0.262 = 0.076 \text{ (rad)}$	
	$K ' = \cos^2(\phi' - \theta)$	
	$\frac{1}{\cos\theta \cdot \cos(\delta' + \theta) \cdot \left\{1 + \sqrt{\frac{\sin(\phi' + \delta') \cdot \sin(\phi' - \theta)}{\cos(\delta' + \theta)}}\right\}^2}$	$K_{\rm EA}' =$
		0.800
支持層	$\phi = 0, \ \delta = 0, \ k_{\rm h} = 0.054, \ k_{\rm h}' = \frac{\gamma_1 n_1 + \gamma_2 n_2 + \gamma_w n_2 + \dots + q}{\gamma_1 h_1 + \gamma'_2 h_2 + \dots + q'} k_{\rm h} = 0.101,$	
(非被状化層)	$\theta = 0.101 (rad)$	
EL13.0m	$K = -\frac{\cos^2(\phi - \theta)}{\cos^2(\phi - \theta)}$	
\sim	$\mathbf{A}_{\text{EA}} = \frac{1}{\left(\cos\theta - \cos(\delta + \theta)\right) \left[1 + \left(\sin(\phi + \delta) \cdot \sin(\phi - \theta)\right)\right]^2} \cdot \cos\theta$	$K_{\rm EA} =$
	$\frac{\cos \theta + \cos(\theta + \theta)}{\cos(\delta + \theta)} \int \frac{1}{\cos(\delta + \theta)} \int \frac{1}{\cos(\delta + \theta)} \int \frac{1}{\cos(\delta + \theta)} \frac{1}{\sin(\delta + \theta)} $	1.010

・受働側

表 6.4.6 受働側各層の土圧係数

計算深度	計算式	土圧係数
	非液状化層のため、「地震時の受動土圧係数」を求める。	
表層	地震時、水位以浅、砂質土	
(地下水以浅)	$\phi = 30^{\circ}, \ \delta = 0^{\circ}, \ k_{\rm h} = 0.054, \ \theta = \tan^{-1} k_{\rm h} = 0.054 (rad)$	
EL.±0.0m	$\cos^2(\phi - \theta)$	
\sim EL1.5m	$K_{\rm EP} = \frac{1}{\left(1 - \omega\right)^2} \cdot \cos \delta$	
	$\cos\theta \cdot \cos(\delta - \theta) \cdot \left\{ 1 - \sqrt{\frac{-\cos(\theta - \theta)}{\cos(\delta - \theta)}} \right\}$	$K_{\rm EP} =$
1 民日功所 [民		2.905
1 層日砂質土層 (完全液状化層)	一元全液状化層のため、「液状化した土層の泥水圧」を対象とする。	
EL1.5m	$CO23, K_{\rm P} = 1.000$	$K_{\rm p} =$
\sim EL 5.0m		л _Р 1.000
ELJ.0III	「地震時の受動土圧係数」を求める。	1.000
	$\phi = 0^{\circ}, \ \delta = 0^{\circ}, \ k_{\rm h} = 0.054,$	
	γ_{1} , $\gamma_{1}h_{1} + \gamma'_{2}h_{2} + \gamma_{w}h_{2} + \gamma'_{3}h_{3} + \gamma_{w}h_{3}$, -0.100	
甲間粘性土層 (非液状化層)	$\kappa_{\rm h} = \frac{\gamma_{\rm h} - \gamma_{\rm h}}{\gamma_{\rm h} + \gamma_{\rm h}^{\prime} + \gamma_{\rm h}^{\prime} + \gamma_{\rm h}^{\prime} + \gamma_{\rm h}^{\prime} + \gamma_{\rm h}^{\prime}} \kappa_{\rm h} - 0.100$	
EL5.0m	$\theta = \tan^{-1} k_{\rm h} = 0.100 ({\rm rad})$	
\sim EL 8.0m	$\cos^2(\phi - \theta)$	
EL0.011	$K_{\rm EP} = \frac{1}{\left(\sqrt{\sin(\phi - \delta)} \cdot \sin(\phi - \theta) \right)^2} \cdot \cos \delta$	
	$\cos\theta \cdot \cos(\delta - \theta) \cdot \left\{ 1 - \sqrt{\frac{\sin(\psi - \theta)}{\cos(\delta - \theta)}} \right\}$	$K_{\rm EP} =$
		1.000
2層目砂質土層	完全液状化層のため、「液状化した土層の泥水圧」を対象とする。	
EL8.0m \sim	$CO23, K_{\rm P} = 1.000$	<i>v</i> _
EL13.0m		$\Lambda_{\rm P} = 1.000$
	「地震時の受働十円係数」を求める	1.000
	$\phi = 0^{\circ}, \ \delta = 0^{\circ}, \ k_{\rm h} = 0.054$	
	$\frac{1}{1} \frac{1}{1} \frac{1}$	
支持層	$k_{\rm h}' = \frac{\gamma_1 + \gamma_2 + \gamma_2 + \gamma_3 + \gamma_4}{\gamma_1 h_1 + \gamma_2 + h_2 + \cdots} k_{\rm h} = 0.115$	
(非液状化層)	$\theta = \tan^{-1} k_{\rm h} = 0.114 (\rm rad)$	
\sim	$\cos^2(\phi - \theta)$	
	$K_{\rm EP} = \frac{\cos(\psi - \theta)}{\left(\sqrt{\sin(\phi - \delta)}\sin(\phi - \theta)\right)^2} \cdot \cos\delta$	
	$\left \cos\theta \cdot \cos(\delta - \theta) \cdot \left\{ 1 - \sqrt{\frac{\sin(\psi - \theta) \cdot \sin(\psi - \theta)}{\cos(\delta - \theta)}} \right\} \right $	$K_{\rm EP} =$
		1.000

⑤ 土水圧の振動成分

土水圧の振動成分は拡張した Westergaard の土水圧公式により求めた。

$$P_{dw}(z, \gamma) = \alpha_{ds} \frac{7}{8} k_{hr}(\gamma_w + \gamma' \cdot r_u) \sqrt{H_d}(z - D_w)$$

z : 地盤面からの深度(m)
 D_w : 地盤面から地下水位までの深度(m)
 α_{ds} : 固結工法の動的荷重低減係数 (一般に、0.3)
 γ_w : 水の単位体積重量 (kN/m³)
 γ : 土の水中単位体積重量 (kN/m³)
 r_u : 堤防盛土外側の水平地盤部での過剰間隙水圧比
 H_d : 地下水位から最も下の液状化層 (完全液状化層と準液状化層)の下端
までの距離(m)

km(z): 深度に応じて低減した水平震度で以下の式により算出する。

 $k_{\rm hr}(z) = k_{\rm h}(1 - 0.03z)$

	土層区分	計算深度	計算式	動水圧 P _{dw} (kN/m ²)
	1 層目 砂質土層 (準液状化)	EL1.5m (下)	z=0.00	0.0
主		EL5.0m (上)	$0.3 \times 7/8 \times 0.18 \times (1 - 0.03 \times 5.0) \times (10.0 + 8.0 \times 0.661) \times \sqrt{(11.5 \times 3.5)} = 3.90$	3.9
衝側	2 層目 砂質土層 (準液状化)	EL8.0m (下) EL13.0	$\begin{array}{c} 0.3 \times 7/8 \times 0.18 \times (1 - 0.03 \times 8.0) \times (10.0 + 9.0 \times 0.735) \times \sqrt{(11.5 \times 6.5)} = 5.16 \\ \hline 0.3 \times 7/8 \times 0.18 \times (1 - 0.03 \times 13.0) \times (10.0 + 9.0) \end{array}$	5.2
		(上)	$\times 0.735) \times \sqrt{(11.5 \times 11.5)} = 5.51$	5.5
受働 側	1 層目 砂質土層 (完全液状化)	EL1.5m (下)	z=0.00	0.0
		EL5.0m (上)	$0.3 \times 7/8 \times 0.18 \times (1 - 0.03 \times 5.0) \times (10.0 + 8.0 \times 1) \times \sqrt{(11.5 \times 3.5)} = 4.59$	4.6
	2 層目 砂質土層 (完全液状化)	EL8.0m (下)	$0.3 \times 7/8 \times 0.18 \times (1 - 0.03 \times 8.0) \times (10.0 + 9.0 \times 1) \times \sqrt{(11.5 \times 6.5)} = 5.90$	5.9
		EL13.0m (上)	$0.3 \times 7/8 \times 0.18 \times (1 - 0.03 \times 13.0) \times (10.0 + 9.0)$ $\times 1) \times \sqrt{(11.5 \times 11.5)} = 6.30$	6.3

表 6.4.7 土水圧の振動成分

⑥ 土水圧強度の算定

・主働側

表 6.4.8 主働側の土水圧強度

土層 区分	計算 深度 EL.(m)	計算式	土圧 強度 (kN/m ²)
表		地震時主働土圧+Pwを求める。	
/////////////////////////////////////		K _{EA} =0.324, 主働側上載荷重 w _A =54.0kN/m	
地液下状		$\sigma_h(z) = K_{\text{EA}} \cdot \{\sigma_v'(z) + w\} - 2c\sqrt{K_{\text{EA}}} + u(z)$	
水化	0m	$\sigma_{h1}(0) = 0.324 \times \{0 + 54.0\} = 17.50$	17.5
以)浅	-1.5m(上)	$\sigma_{h2}(1.5) = 0.324 \times \{18 \times 1.5 + 54.0\} = 26.24$	26.2
		「常時主働土圧+土水圧漸増成分+動水圧」と「間隙水圧を考慮した地震	
		時主働土圧」を求め、いずれか安全側(大きい方)を採用する。	
		$\sigma_h(z) = K_A \cdot \{\sigma_v'(z) + w\} + u(z) + r_u \cdot (1 - K_A) \cdot \{\sigma_v'(z) + w\} + P_{dw}(z)$	
		$\sigma_h(z) = K_{\rm EA} \cdot \{\sigma_v \cdot (z) + w\} + u(z)$	
1 厦 💭		$K_{\rm A}$ =0.291, $K_{\rm EA}$ '=0.706, $w_{\rm A}$ =54.0kN/m	
冒進		$\sigma_{h_{3i}}(1.5) = 0.291 \times \{27.0 + 54.0\} + 0.0 + 0.661 \times (1 - 0.291) \times \{27.0 + 54.0\} = 61.5$	
砂 状 質 化	-1.5m(下)	$\sigma_{h3e}(1.5) = 0.706 \times \{27.0 + 54.0\} + 0.0 = 57.2$	
土 層 層		σ_{h3i} > σ_{h3e}	61.5
	_	$\begin{split} \sigma_{_{h4i}}(5.0) &= 0.291 \times \left\{ 55.0 + 54.0 \right\} + 35.0 + 0.661 \times \left(1 - 0.291\right) \times \left\{ 55.0 + 54.0 \right\} \\ &+ 3.9 = 121.7 \end{split}$	
	-5.0m(上)	$\sigma_{h4e}(5.0) = 0.706 \times \{55.0 + 54.0\} + 35.0 = 112.0$	
		$\sigma_{_{h4i}}$ > $\sigma_{_{h4e}}$	121.7
		地震時主働土圧+Pwを求める。	
中前非		$w_{\rm A}$ =54.0 kN/m, $K_{\rm EA}$ =1.007, c=50.0 kN/m ² ,	
粘液性状		$\sigma_h(z) = K_{\rm EA} \cdot \{\sigma_v'(z) + w\} - 2c\sqrt{K_{\rm EA}} + u(z)$	
土化層	-5.0m(下)	$\sigma_{h5}(5.0) = 1.007 \times \{55.0 + 54.0\} - 2 \times 50 \times \sqrt{1.007} + 35.0 = 44.4$	44.4
_	-8.0m(上)	$\sigma_{h6}(8.0) = 1.007 \times \{76.0 + 54.0\} - 2 \times 50 \times \sqrt{1.007} + 65.0 = 95.6$	95.6
		「常時主働土圧+土水圧漸増成分+動水圧」と「間隙水圧を考慮した地震	
		時主働土圧」を求め、いずれか安全側(大きい方)を採用する。	
2 層 演		式は1層目砂質土層と同様の式を用いる。	
目液		$K_{\rm A}$ =0.291, $K_{\rm EA}$ '=0.806, w=54.0kN/m	
砂質土層		$\begin{split} \sigma_{h7i}(8.0) &= 0.291 \times \big\{ 76.0 + 54.0 \big\} + 65.0 + 0.735 \times \big(1 - 0.291\big) \times \big\{ 76.0 + 54.0 \big\} \\ &+ 5.2 = 175.8 \end{split}$	
	-8.0m(下)	$\sigma_{h7e}(8.0) = 0.806 \times \{76.0 + 54.0\} + 65.0 = 169.8$	
		$\sigma_{_{h7i}}$ > $\sigma_{_{h7e}}$	175.8

	$ \begin{array}{ c c c c c c c c } \hline & \sigma_{h8i}(13.0) = 0.291 \times \{121.0 + 54.0\} + 115.0 + 0.735 \times (1 - 0.291) \\ & \times \{121.0 + 54.0\} + 5.5 = 262.6 \\ & \sigma_{h8e}(13.0) = 0.806 \times \{121.0 + 54.0\} + 115.0 = 256.1 \end{array} $				
		$\sigma_{_{h8i}}$ > $\sigma_{_{h8e}}$	262.6		
		地震時主働土圧+Pwを求める。根入れ深さ EL14.0m まで計算する			
,非		$w_{\rm A}$ =54.0 kN/m ² , $K_{\rm EA}$ =1.010, c =55.0 kN/m ² ,			
支液状化層)		$\sigma_h(z) = K_{\rm EA} \cdot \{\sigma_v'(z) + w\} - 2c\sqrt{K_{\rm EA}} + u(z)$			
	-13.0m(下)	$\sigma_{h9}(13.0) = 1.010 \times \{121.0 + 54.0\} - 2 \times 55 \times \sqrt{1.010} + 115.0 = 181.2$	181.2		
	-14.0m(上)	$\sigma_{h10}(14.0) = 1.010 \times \{128.0 + 54.0\} - 2 \times 55 \times \sqrt{1.010} + 125.0 = 198.3$	198.3		

・受働側

表	6.4.9	受働	則の土フ	k圧強度

土層 区分	計算 深度 EL.(m)	計算式	土圧 強度 (kN/m ²)
表		地震時受働土圧+Pwを求める。	
唐 (非 地 が		$K_{\rm EP}=2.905$,受働側上載荷重 $w_{\rm P}=0.0 {\rm kN/m^2}$	
下状		$\sigma_h(z) = K_{\rm EP} \cdot \{\sigma_v'(z) + w\} + 2c\sqrt{K_{\rm EP}} + u(z)$	
位層	0m	$\sigma_{h1}(0) = 0$	0.00
浅	-1.5m(上)	$\sigma_{h2}(1.5) = 2.905 \times \{27.00 + 0.00\} = 78.44$	78.4
1		「液状化した土層の泥土圧-動水圧」を求める。	
▲ 層 完 日 全		$\sigma_{h}(z) = \sigma_{v}(z) - P_{dw}(z, \gamma_{sat})$	
口 王 被 世			
質化	-1.5m(下)	$\sigma_{h3}(1.5) = 27.00 - 0.00 = 27.00$	27.0
層包	-5.0m(上)	$\sigma_{h4}(5.0) = 90.00 - 4.59 = 85.41$	85.4
		地震時受動土圧+Pwを求める。	
中(非		$K_{\rm EP} = 1.000, \ c = 40.0 \ \rm kN/m^2,$	
粘液性状		$\sigma_h(z) = K_{\rm EP} \cdot \{\sigma_v'(z) + w\} + 2c\sqrt{K_{\rm EP}} + u(z)$	
土化層	-5.0m(下)	$\sigma_{h5}(5.0) = 1.000 \times \{55.00 + 0.00\} + 2 \times 40.0 \times \sqrt{1.000} + 35.00 = 170.00$	170.0
	-8.0m(上)	$\sigma_{h6}(8.0) = 1.000 \times \{76.00 + 0.00\} + 2 \times 40.0 \times \sqrt{1.000} + 65.00 = 221.00$	221.0
2 0		「液状化した土層の泥土圧-動水圧」を求める。	
△ 眉 合 全		$\sigma_{h}(z) = \sigma_{v}(z) - P_{dw}(z, \gamma_{sat})$	
□ 液 砂 状			
質 化 土 層	-8.0m(下)	$\sigma_{h7}(8.0) = 141.00 - 5.90 = 135.10$	135.1
/ 僧 〜	-13.0m(上)	$\sigma_{h8}(13.0) = 236.00 - 6.30 = 229.70$	229.7

(非液状化層)		地震時受動土圧+Pwを求める。根入れ深さ EL14.0m まで計算する	
		$K_{\rm EP} = 1.000, \ c = 55.0 \ \rm kN/m^2,$	
		$\sigma_h(z) = K_{\rm EP} \cdot \{\sigma_v'(z) + w\} + 2c\sqrt{K_{\rm EP}} + u(z)$	
	-13.0m(下)	$\sigma_{h9}(13.0) = 1.000 \times \{121.00 + 0.00\} + 2 \times 55.0 \times \sqrt{1.000} + 115.00 = 346.00$	346.0
	-14.0m(上)	$\sigma_{h10}(14.0) = 1.000 \times \{128.00 + 0.00\} + 2 \times 55.0 \times \sqrt{1.000} + 125.00 = 363.00$	363.0

⑦ 土庄·水庄強度分布図

(単位 kN/m²)

図 6.4.4 土水圧強度の分布

⑧ 土圧・水圧合力

No.	$P_{\rm AH}$		у	$M_{\rm A}$	δ	C (DV(-2)	$P_{\rm AV}$
	(kN/m)		(m)	$(kN \cdot m/m)$	()	(kN/m^2)	(kN/m)
\bigcirc	$1/2 \times 17.5 \times 1.5 =$	13.13	13.500	177.3	15.0	—	3.52
2	$1/2 \times 26.2 \times 1.5 =$	19.65	13.000	255.5	15.0	—	5.27
3	$1/2 \times 61.5 \times 3.5 =$	107.63	11.333	1219.8	5.7	—	10.74
4	$1/2 \times 121.7 \times 3.5 =$	212.98	10.167	2165.4	5.7	—	21.26
5	$1/2 \times 44.4 \times 3.0 =$	66.60	8.000	532.8		50.0	0.00
6	$1/2 \times 95.6 \times 3.0 =$	143.40	7.000	1003.8		50.0	150.00
\bigcirc	$1/2 \times 175.8 \times 5.0 =$	439.50	4.333	1904.4	4.5	—	34.59
8	$1/2 \times 262.6 \times 5.0 =$	656.50	2.667	1750.9	4.5	—	51.67
9	$1/2 \times 181.2 \times 1.0 =$	90.60	0.667	60.4		55.0	0.00
10	$1/2 \times 198.3 \times 1.0 =$	99.15	0.333	33.0		55.0	55.00
Σ		1849.1		9103.3			332.1

表 6.4.10 主働側の土水圧合力

ここに、 P_{AH} : 改良地盤の主働側(盛土)に作用する土水圧合力の水平成分 P_{AV} : "の鉛直成分 砂の場合 $P_{AV} = P_{AH} \cdot \tan \delta$ (または、 $P_{AH} \cdot \tan \delta$ ') 粘性土の場合 $P_{AV} = c \cdot h (h : 層厚または根入れ長)$

表 6.4.11 受働側の土水圧合力

No.	$P_{\rm PH}$		y	$M_{\rm P}$	δ	C	$P_{\rm PV}$
	(kN/m)		(m)	$(kN \cdot m/m)$	()	(kN/m^2)	(kN/m)
1)'	$1/2 \times 78.4 \times 1.5 =$	58.80	13.000	764.4	0.0	—	0.0
2'	$1/2 \times 27.0 \times 3.5 =$	47.25	11.333	535.5	0.0	—	—
3'	$1/2 \times 85.4 \times 3.5 =$	149.45	10.167	1519.5	0.0	—	_
4'	$1/2 \times 170.0 \times 3.0 =$	255.00	8.000	2040.0	—	40.0	—
5'	$1/2 \times 221.0 \times 3.0 =$	331.50	7.000	2320.5	—	40.0	—
6'	$1/2 \times 135.1 \times 5.0 =$	337.75	4.333	1463.5	0.0	—	—
\bigcirc	$1/2 \times 229.7 \times 5.0 =$	574.25	2.667	1531.5	0.0	—	—
8'	$1/2 \times 346.0 \times 1.0 =$	173.00	0.667	115.4	_	55.0	—
9'	$1/2 \times 363.0 \times 1.0 =$	181.50	0.333	60.4	_	55.0	_
Σ	_	2108.5	_	10350.7	_	_	0.0

ここに、 PPH : 改良地盤の受働側に作用する土水圧合力の水平成分

P_{PV} :	11	の鉛直成分
砂の場合	$P_{\rm PV} = P_{\rm PH} \cdot \tan \delta$ (または、	$P_{\rm PH} \cdot \tan \delta$)
粘性土の場合	考慮しない	

3) 対策工の外的安定の検討

考慮すべき外力

考慮すべき改良地盤に作用する外力は以下の通りである。

抵抗力		鉛直方向 V (kN/m)	<i>X</i> (m)	水平方向 <i>H</i> (kN/m)	<i>Y</i> (m)	$M_{ m R}$ (kN·m/m)
改良地盤の有効重量	W	804.0	4.0	_		3216.0
改良地盤上の盛土の重量	$W_{\rm E}$	216.0	4.0			864.0
主働側土水圧(鉛直)	P_{AV}	332.1	8.0			2656.8
受働側土水圧(鉛直)	$P_{\rm PV}$	0.0	0.0		_	0.0
受働側土水圧(水平)	P_{PH}	—	_	2108.5	4.909	10350.7
改良地盤に作用するせん 断抵抗力 F _{RT+} F _{RU}	F_{R}		_	440.0	0.0	0.0
Σ		1352.1		2548.5		17087.5
駆動力		鉛直方向 V (kN/m)	<i>X</i> (m)	水平方向 <i>H</i> (kN/m)	<i>Y</i> (m)	$M_{\rm D}$ (kN·m/m)
改良地盤の慣性力	H		_	56.5	6.250	353.1
主働側土水圧	P_{AH}			1849.1	4.923	9103.3
改良地盤上部盛土の慣性力	H_{E}			6.8	13.25	90.1
Σ		_		1912.4	_	9546.5

表 6.4.12 改良地盤に働く外力

※計算式は次ページ以降に示す。

図 6.4.5 固結工法の検討で用いる外力図

② 滑動の検討

改良地盤に作用する外力は以下の通りである。

・改良地盤にかかる慣性力 H = 56.5 (kN/m)・改良地盤上部の土塊にかかる慣性力 $H_E = 6.8 (kN/m)$ ・主働側土水圧合力水平成分 $P_{AH} = 1849.1 (kN/m)$ ・受働側土水圧合力水平成分 $P_{PH} = 2108.5 (kN/m)$ ・改良地盤底面に作用するせん断抵抗力の合力は、以下の式を用いて算定する。 $F_R = F_{RT} + F_{RU} = c_B \cdot B + (W'+W_E + P_{AV} - P_{PV}) \cdot \tan \phi_B$ =55.0×8.0+(804.0+216.0+332.1-0.0)×0

=440.0 (kN/m)

- ここに、
 - cB:支持層の粘着力55.0 (kN/m²)ØB:支持層の内部摩擦角0.0 (°)

以上より滑動安全率 F_sを『手引き』式(6.18)より算定した。

$$F_{\rm S} = \frac{P_{\rm PH} + F_{\rm R}}{H + H_{\rm F} + P_{\rm AH}} = \frac{2108.5 + 440.0}{56.5 + 6.8 + 1849.1} = \frac{2548.5}{1912.4} = 1.332 > 1.000 \text{ \simO.K. \sim}$$

3 支持力の検討

荷重の合力の作用点を中心とする仮想の基礎幅を考え、極限状態ではこの部分に荷重 が一様に働くとする Meyerhof の考え方に準拠している。

改良地盤底面の鉛直地盤反力と極限支持力から安全率を算出し、所定の安全率以上と なることを照査する。支持力安全率は次式により求める。

$$F_{\rm S} = \frac{Q_u}{Q_{\rm V}}$$

ここに、

Qu : 荷重の偏心傾斜、寸法、根入れ深さを考慮した極限支持力(kN/m)

 $Q_{\rm V}$: 地盤反力(kN/m)

a) 外力補正

支持力の検討では外力が釣合っているものとして考え、滑動の照査用外力のうち、 水平地盤側(受働側)の支持層及び非液状化から作用する土水圧合力と改良地盤底面 のせん断抵抗力に補正を加える。

支持層の受働側土水圧合力と改良地盤底面のせん断抵抗力の発揮割合fを、以下の式 により求め、支持層の受働側土水圧合力と改良地盤底面のせん断抵抗力に発揮割合f を乗じた外力を用いる

$$f = \frac{H + H_{\rm E} + P_{\rm AH} - P_{\rm PH2} - P_{\rm PH4}}{P_{\rm PH1} + P_{\rm PH3} + P_{\rm PH5} + F_{\rm R}}$$

ここに、

P_{PHn}: n層目砂質土層から改良地盤に作用する受働側土水圧合力の水平成分

図 6.4.6 支持力を検討する際の改良地盤に作用する水平方向の外力補正

受働側で抵抗力を発揮する水平力	J	計算式 (図 6.4.4より)	水平方向 <i>H</i> (kN/m)	
表層非液状化層 受働側土水圧合力	$P_{\rm PH1}$	$1/2 \times 78.4 \times 1.5 = 58.8$	58.8	
中間非液状化層 受働側土水圧合力	$P_{\rm PH3}$	$1/2 \times (170.0 + 221.0) \times 3.0 =$	586.5	
支持層非液状化層 受働側土水圧合力	$P_{\rm PH5}$	$1/2 \times (346.0+363.0) \times 1.0 =$	354.5	
改良地盤底面に作用するせん断抵抗力	$F_{\rm R}$	3) ②より	440.0	
Σ			1439.8	
主働側の水平力		計算式	水平方向 <i>H</i> (kN/m)	
改良地盤の慣性力	Н	表 6.4.2より	56.5	
改良地盤上部盛土の慣性力	$H_{\rm E}$	表 6.4.2より	6.8	
主働側土水圧合力(P _{AH1} +P _{AH2} +P _{AH3})	$P_{\rm AH}$	表 6.4.10より	1849.1	
Σ			1912.4	
受働側で抵抗力を発揮しない水平	力	計算式 (図 6.4.4より)	水平方向 <i>H</i> (kN/m)	
上層液状化層の受働側土水圧合力	$P_{\rm PH2}$	$1/2 \times (27.0+85.4) \times 3.5 =$	196.7	
下層液状化層の受働側土水圧合力	$P_{\rm PH4}$	$1/2 \times (135.1 + 229.7) \times 5.0 =$	912.0	
Σ			1108.7	

表 6.4.13 外力補正(発揮割合f)の計算

上表より、 $f = \frac{56.5 + 6.8 + 1849.1 - 196.7 - 912.0}{58.8 + 586.5 + 354.5 + 440.0} = \frac{1912.4 - 1108.7}{1439.8} = 0.558$

b) 鉛直地盤反力

固結工法による改良地盤の地盤反力度分布は、図 6.4.7 に示すように荷重の合力の 作用点を中心とする仮想の基礎幅に長方形分布し、この部分に荷重が一様に働くとす る考え方に基づき、地盤反力とその分布を求めた。

図 6.4.7 改良地盤底面の地盤反力分布

図 6.4.8 改良地盤に作用する力

鉛直力とモーメントから、荷重の偏心量 e を求めた。

・鉛直力*V* : 改良地盤底面に作用する力以外による鉛直力 (kN/m)

$$V = W' + W_E + P_{AV} - f \cdot (P_{PV1} - P_{PV3} - P_{PV5}) - P_{PV2} - P_{PV4}$$

 $= 804.0 + 216.0 + 332.1 - 0.558 \times (0.0 - 0.0 - 0.0) - 0.0 - 0.0$
 $= 1352.1 (kN/m)$

・抵抗モーメント M_R (表 6.4.10、表 6.4.11、表 6.4.12 より) $M_R = W \cdot \frac{B}{2} + W_E \cdot x_{WE} + P_{AV} \cdot B + f \cdot P_{PH1} \cdot y_{PPH1} + P_{PH2} \cdot y_{PPH2}$ $+ f \cdot P_{PH3} \cdot y_{PPH3} + P_{PH4} \cdot y_{PPH4} + f \cdot P_{PH5} \cdot y_{PPH5}$ $= 804.0 \times 8/2 + 216.0 \times 4.0 + 332.1 \times 8.0 + 0.558 \times (58.80 \times 13.0)$ $+ (47.25 \times 11.333 + 149.45 \times 10.167) + 0.558 \times (255.00 \times 8.0 + 331.50 \times 7.0)$ $+ (337.75 \times 4.333 + 574.25 \times 2.667) + 0.558 \times (173.00 \times 0.667 + 181.50 \times 0.333)$ = 14744.5 (kN/m·m)

・転倒モーメント M_D (表 6.4.2、表 6.4.10より) $M_D = H \cdot y_H - H_E \cdot y_{HE} + P_{AH1\sim5} \cdot y_{PAH1\sim5}$ = 56.5×6.25+6.8×13.25+13.13×13.5+19.65×13.0+107.63×11.333 + 212.98×10.167+66.60×8.0+143.40×7.0+439.50×4.333 + 656.50×2.667+90.6×0.667+99.15×0.333 = 9546.5(kN/m·m) ここに、

W':改良地盤有効重量 ($W - \gamma_w \times V$ (改良地盤体積) = 1800-10.0×12.5×8.0=800.0) W_E :改良地盤上面に載る盛土の重量 ($W_E = \gamma_E \times V_E = 18.0 \times 1.5 \times 8.0 = 216.0$) x,y:作用 (重心) 位置の改良地盤端部からの距離(m)

- ・モーメント*M* : 改良地盤底面に作用する力以外によるモーメント(>0)(kN/m・m) $M = M_{\rm R} - M_{\rm D} = 14744.5 - 9546.5 = 5198.0$ (kN/m・m)
- ・荷重の偏心量 e

$$e = B/2 - \frac{M}{V}$$

= 8.0/2-5198.0 /1352.1
= 0.156 (m)

c) 極限支持力

荷重の偏心傾斜、寸法、根入れ深さを考慮し、以下の式により極限支持力を求める。

$$Q_{u} = B_{e} \left\{ \alpha \kappa c_{\mathrm{B}} N_{\mathrm{c}} S_{\mathrm{c}} + \kappa q N_{\mathrm{q}} S_{\mathrm{q}} + \frac{1}{2} \gamma'_{\mathrm{B}} \beta B_{e} N_{\gamma} S_{\gamma} \right\}$$

ここに、

 Q_u :荷重の偏心傾斜、寸法、根入れ深さを考慮した極限支持力(kN/m) c_B :支持層の粘着力(kN/m²) q:上載荷重(周辺地盤の改良地盤底面高さにおける鉛直有効応力) (kN/m²) B_e :荷重の偏心を考慮した有効載荷幅 (m) γ'_B :支持層の有効単位体積重量 (kN/m³) α 、 β :基礎の形状係数(特殊な形状を除き、一般に 1.0 を使ってよい) κ :根入れ効果に対する割増し係数 N_c 、 N_q 、 N_γ :荷重の傾斜を考慮した支持力係数 S_c 、 S_q 、 S_γ :支持力係数の寸法効果に関する補正係数

・有効上載荷幅 Be

$$\begin{split} B_e &= B - 2e \\ &= 8.0 - 2 \times 0.156 \\ &= 7.688 \ (\text{m}) \end{split}$$

上載荷重 q

 $q = \gamma' \times D_{\rm r} + \sigma'_{\rm v} = 7.0 \times 1.0 + 121.0 = 128.0$ (kN) ここに、 $D_{\rm r}$: 有効根入れ深さ

支持力係数

根入れ効果に対する割増し係数 κ 、荷重の傾斜を考慮した支持力係数 N_c 、 N_q 、 N_γ 、支持力係数の寸法効果に関する補正係数 S_c 、 S_q 、 S_γ は道路橋示方書・同解説 IV 下部構造編¹⁾を参考に以下のように設定した。

・荷重の傾斜	$tan\theta$	$= H_{\rm B}/V_{\rm r} = 0.182$
・改良体に作用する鉛直力	Vr	= 1352.1 (kN/m)
・改良体底面に作用するせん断力	H_{B}	$= f \cdot F_{\rm R} = 245.5 ({\rm kN/m})$
・根入れ効果に対する割り増し係数	κ	$= 1 + 0.3 \times D_{\rm r} / B_{\rm e} = 1.039$

項目	記号	係数値
	$N_{\rm c} =$	3.88
荷重の傾斜を考慮した支持力係数	$N_{\rm q} =$	1.00
	$N_{\rm r} =$	0.00
支持力係数の寸法効果に関する補正係数	$S_{\rm c} =$	0.57
	$S_q =$	0.46
	$S_r =$	0.51

表 6.4.14 支持力係数

・極限支持力

$$\begin{aligned} Q_u &= B_e \left\{ \alpha \kappa c_{\rm B} N_{\rm c} S_{\rm c} + \kappa q N_{\rm q} S_{\rm q} + \frac{1}{2} \gamma'_{\rm B} \beta B_e N_{\gamma} S_{\gamma} \right\} \\ &= 7.688 \times (1.0 \times 1.039 \times 55.0 \times 3.88 \times 0.57 + 1.039 \times 128.0 \times 1.0 \times 0.46 \\ &+ 1/2 \times 7.0 \times 1.0 \times 7.688 \times 0.0 \times 0.51) \\ &= 7.688 \times (126.38 + 61.18 + 0.00) \\ &= 1442.0 \, (\rm kN/m) \end{aligned}$$

支持力 Qv

 $Q_{\rm V} = V = 1352.1 \, ({\rm kN/m})$

d)支持力安全率

 $\frac{F_{\rm s} = \frac{Q_u}{Q_{\rm v}} = \frac{1442.0}{1352.1} = 1.066 > 1.000 \sim \text{O.K.} \sim 0.\text{K}$

参考文献 1) 「道路橋示方書・同解説 IV下部構造編 平成 24 年 3 月、p. 302、p. 303」
4) 対策工の内的安定の検討

内的安定として、水平せん断、格子壁抜出しせん断、鉛直せん断の検討を行い、改良 体に生じるせん断応力が一軸圧縮強さ qua から求める設計に用いる許容せん断強さ τ_a を 越えないことを確認した。

① 水平せん断

改良地盤の水平せん断応力については、以下式を用いて算出した。

$$\tau_{1} = \frac{H_{z} + H_{E} + P_{AHz} - P_{PHz}}{a_{p} \cdot B}$$
ここに、
 τ_{1} : 改良体に作用する水平せん断応力(kN/m²)

- Hz: 検討する深度の上部の改良地盤に作用する慣性力(kN/m)
- H_E:改良体上面の地盤に作用する慣性力(kN/m)
- PAHz :検討する深度の上部の改良地盤に作用する主働側土水圧合力(kN/m)
- P_{PHz}:検討する深度の上部の改良地盤に作用する受働側土水圧合力(kN/m)

図 6.4.9 改良地盤の水平せん断破壊

図 6.4.10 に示すように各深度の改良地盤における水平せん断応力分布を計算し、最大 せん断応力について許容値以内となるか照査する。

図 6.4.10に示す通り、水平せん断応力が最大となる地点は深度5.0m地点であるため、 深度5.0m地点において改良地盤に作用する水平せん断応力の計算例を示す。

- ・検討する深度(5.0m)における改良地盤上面の盛土及び改良地盤の慣性力 H_z+H_E $H_z+H_E = \gamma \times H \times B \times k_{hr} = 18.0 \times (1.5+3.5) \times 8.0 \times 0.054 \times (1-0.03 \times 14.0) = 22.6 (kN/m)$
 - ※ 改良地盤上面に載る盛土、および改良地盤の慣性力算定における、水平震度計算 に用いる深度方向の低減係数は、改良体底面深度を用いる。
- ・検討する深度(5.0m)における主働土圧合力 P_{AH}
 表 6.4.10 (①+②+③+④) より、P_{AH}=353.4 (kN/m)
- ・検討する深度(5.0m)における受働土圧合力 P_{PH}
 表 6.4.11 (①+②+③) より、P_{PH}=255.5 kN/m
- ・検討する深度(5.0m)における水平せん断応力 PPH

 $\tau_1 = \frac{H_z + H_E + P_{AHz} - P_{PHz}}{a_p \cdot B} = \frac{22.6 + 353.4 - 255.5}{0.50 \times 8.0} = 30.1 \text{ (kN/m^2)}$

 $\underline{\tau_1} = 30.1 \ (kN/m^2) < \tau_a = 200.0 \ (kN/m^2) \sim O.K. \sim$

② 抜出しせん断

格子状改良の場合に主に盛土側からの土圧によって最も盛土側に位置する改良壁体 が抜出しせん断破壊しないよう、改良壁体に作用するせん断応力を下式により求め、 改良地盤のいずれの深度においても改良壁体に作用するせん断応力が設計に用いるせ ん断強さを超えていないことを確認した。

図 6.4.12 に示すとおり、本ケースにおいて格子壁に作用する合力が最大となる地点 は改良体底面深度である。ただし、根入れ長によって、せん断応力最大となる地点が 改良地盤底面または、液状化層下端深度となるため、最下端の液状化層下端深度

(13.0m)および改良地盤底面深度(14.0m)において格子壁のせん断応力を算出し、 最大せん断応力が許容せん断応力以内となるか照査を行った。

図 6.4.11 格子状改良体の抜出し破壊

・検討する深度が改良地盤底面の場合

$$\tau_2 = \frac{\left(H_{\mathrm{Tz}} + P_{\mathrm{AHz}} - P_{\mathrm{0Hz}}\right) \cdot l}{2bz}$$

・検討する深度が上記以外の場合

$$\tau_2 = \frac{\left(H_{\rm Tz} + P_{\rm AHz} - P_{\rm 0Hz}\right) \cdot l}{2bz + bl}$$

ここに、

- τ2 : 改良壁体に作用する抜出しせん断応力(kN/m²)
- HTz :検討する深度の上部の改良壁体に作用する慣性力(kN/m)
- PAHz: :検討する深度の上部の改良地盤に作用する主働側土水圧合力(kN/m)
- P_{0Hz}: 検討する深度の上部の改良壁体に格子内部から作用する静止土水圧合力 (kN/m)
 - 1 : 図 6.4.11 に示す対象とする改良壁体の堤防法線方向の長さ(m)
 - b : 改良壁体の厚さ(m)
 - z : 改良体上面からの検討位置の深度(m)

深度	ŧz.	層厚	単位 体積 重量	全上載圧	静水圧 u(z)	有効 上載圧	静止 土圧 係数	静止土水圧 <i>σ_h(z)=</i>	静止土	大庄合力 P _{0hz}
		h	γ	$\sigma_{v}(z)$		$\sigma_{v}(z)$	K_0	$K_0 \cdot \sigma_v'(z) + u(z)$	各層	照查地点
(m	ı)	(m)	(kN/m ³)	(kN/m ²)	(kN/m ²)	(kN/m ²)	—	(kN/m ²)	(k	N/m)
0~	1.5	1.5	18.0	27.0	0.0	27.0	0.5	13.5	10.1	_
1.5~	5.0	3.5	18.0	90.0	35.0	55.0	0.5	62.5	133.0	_
5.0~	8.0	3.0	17.0	141.0	65.0	76.0	0.5	103.0	248.3	_
8.0~	13.0	5.0	19.0	236.0	115.0	121.0	0.5	175.5	696.3	P_{0h} (1.5~13m) =1077.6
13.0~	14.0	1.0	17.0	253.0	125.0	128.0	0.5	189.0	182.3	P_{0h} (1.5~14m) =1259.9

表 6.4.15 静止土水圧合力の算定

a) 液状化層下端深度(13.0m)における格子壁の抜け出しせん断応力

$$H_{\rm Tz} = W_{\rm z} \times k_{\rm hrz} = 0.8 \times 11.5 \times 18.0 \times 0.054 \times (1 - 0.03 \times 14.0) = 5.2 \,(\rm kN/m)$$

- ・検討する深度(13.0m)の上部の改良地盤に作用する主働側土水圧合力(kN/m)
 P_{AHz} = 1626.6 (kN/m) (表 6.4.10 より ΣP_{AH}-(①+②+⑨+⑩))
- ・検討する深度(13.0m)の上部の改良壁体に格子内部から作用する静止土水圧合力(kN/m)
 P_{0Hz} = 1077.6 (kN/m) (表 6.4.15 より)

$$\tau_2(13.0) = \frac{\left(H_{\text{Tz}} + P_{\text{AHz}} - P_{0\text{Hz}}\right) \cdot l}{2bz + bl} = \frac{\left(5.2 + 1626.6 - 1077.6\right) \times 4.0}{2 \times 0.8 \times 11.5 + 0.8 \times 4.0} = 102.6 \,(\text{kN/m}^2)$$

b) 改良地盤底面深度(14.0m)における格子壁の抜け出しせん断応力

- ・検討する深度(14.0m)の上部の改良壁体に作用する慣性力 H_{Tz} $H_{Tz} = W_z \times k_{hrz} = 0.8 \times 12.5 \times 18.0 \times 0.054 \times (1 - 0.03 \times 14.0) = 5.6 (kN/m)$
- ・検討する深度(14.0m)の上部の改良地盤に作用する主働側土水圧合力(kN/m)
 P_{AHz} = 1816.4(kN/m) (表 6.4.10 よりΣP_{AH}-(①+②))
- ・検討する深度(14.0m)の上部の改良壁体に格子内部から作用する静止土水圧合力(kN/m)
 P_{0Hz} = 1259.9 (kN/m) (表 6.4.15 より)
- ・検討する深度(14.0m)の上部の格子壁の抜出しせん断応力

$$\tau_2(14.0) = \frac{\left(H_{\text{Tz}} + P_{\text{AHz}} - P_{0\text{Hz}}\right) \cdot l}{2bz} = \frac{\left(5.6 + 1816.4 - 1259.9\right) \times 4.0}{2 \times 0.8 \times 12.5} = \frac{112.4 \text{ (kN/m}^2)}{2}$$

$$au_2(14.0) = 112.4 \ (kN/m^2) < au_a = 200.0 \ (kN/m^2) \sim O.K. \sim$$

③ 鉛直せん断

図 6.4.13 に示すように改良地盤底面から作用する地盤反力によって鉛直にせん断破壊しないよう、改良壁体に作用するせん断応力 t,を以下の式により求め、改良地盤のいずれの位置においても改良壁体に作用するせん断応力が許容せん断応力以内となるか照査を行った。

図 6.4.13 鉛直せん断破壊

$$\tau_{v} = \frac{\left(P_{\rm PV} + Q_{\rm Vx} - W'_{\rm x} - W_{\rm Ex}\right) \cdot L_{\rm U1}}{D_{\rm T} L_{\rm T1}}$$

ここに、

- τ_v : 鉛直せん断応力(kN/m²)
- Ppv
 : 改良地盤の受働側に作用する土水圧合力の鉛直成分で、液状化層上部

 (Ppv1)、液状化層(Ppv2、Ppv4)、中間非液状化層(Ppv3)、支持層(Ppv5)の成

 分に分割し、Ppv1、Ppv3、Ppv5 に発揮割合fを乗じる (kN/m)
- Qvx : 改良地盤前趾から鉛直せん断を検討する断面までの地盤反力の合力(kN/m)
- W'x : 改良地盤前趾から鉛直せん断を検討する断面までの改良地盤の有効重 量(kN/m)
- W_{Ex}: 改良地盤前趾から鉛直せん断を検討する断面までの改良地盤上面に載る盛土の全重量(kN/m)
- Lu1 :堤防法線方向の改良地盤1ユニットの長さ(ブロック状の場合、1)(m)
- *D*_T : 改良地盤の高さ (m)
- L_{T1} :堤防法線方向の改良地盤1ユニットのうち改良壁体の長さ(ブロック 状の場合、1)(m)

図 6.4.14 堤防横断面方向の改良地盤における鉛直せん断力分布図

図 6.4.14 のように、鉛直せん断力が最大となる横断位置は改良地盤前趾から有効幅である 7.688m の地点であり、ここでは改良地盤前趾から 7.688m の位置において改良地盤 に作用する鉛直せん断応力を算出した。

・検討する断面(改良地盤前趾から 7.688m)までの地盤反力の合力 Qvx

 $Q_{\rm Vx} = q \times x = (1352.1/7.688) \times 7.688 = 1352.1 \,(\rm kN/m)$

- ・検討する断面(改良地盤前趾から 7.688m)までの改良地盤の有効重量 W'_x $W'_x = W'/B \times x = 804.0 / 8.0 \times 7.688 = 772.6$ (kN/m)
- ・検討する断面(改良地盤前趾から 7.688m)までの改良地盤上面に載る盛土の重量 W_{Ex} $W_{\text{Ex}} = \gamma_{\text{E}} \times D_{\text{WL}} \times x = 18.0 \times 1.5 \times 7.688 = 207.6 \text{ (kN/m)}$
- ・検討する断面(改良地盤前趾から7.688m)における鉛直せん断応力

$$\tau_{v} = \frac{\left(P_{PV2} + P_{PV4} + f\left(P_{PV1} + P_{PV3} + P_{PV5}\right) + Q_{Vx} - W'_{x} - W_{Ex}\right) \cdot L_{U1}}{D_{T}L_{T}}$$

=
$$\frac{\left(0.0 + 0.0 + 0.569 \times (0.0 + 0.0 + 0.0) + 1352.1 - 772.6 - 207.6\right) \times 4.8}{12.5 \times 0.8}$$

=
$$178.5 \,(\text{kN/m}^{2})$$

 au_{v} = 178.5 (kN/m²) < au_{a} =200.0 (kN/m²) \sim O.K. \sim

5) 安定検討結果(まとめ)

改良体の安定検討結果一覧表を表 6.4.16 に示す。

	検討項目	単位	検討結果	
从的字字	滑動		$F_{\rm S} = 1.332 > 1.0$	O.K.
2下的女化	支持力	—	$F_{\rm S} = 1.066 > 1.0$	O.K.
	水平せん断	kN/m ²	$\tau_1 = 30.1 < \tau_a = 200.0$	O.K.
内的安定	格子壁抜出しせん断	kN/m ²	$\tau_2 = 112.4 < \tau_a = 200.0$	O.K.
	鉛直せん断	kN/m ²	$\tau_{\rm v} = 178.5 < \tau_{\rm a} = 200.0$	O.K.

表 6.4.16 安定検討結果一覧表

6.4.2 耐震性能照查

6.4.1 で設定した対策工を施した堤防のレベル2 地震動に対する耐震性能について有限要素法 による自重変形解析により照査を行った。耐震性能を満足しない場合には、対策工諸元を見直し、 再度照査を行い、耐震性能を満たす対策工諸元を決定する。

(1) 対策工諸元

改良地盤(改良体とその間の未改良部)を弾性体としてモデル化して変形解析を実施した。 改良地盤を表す弾性体の定数を、対策工諸元から以下の通り設定した。

項目	諸元	備考
せん断剛性	16667 kN/m ²	$q_{\rm ua} = 400 {\rm kN/m^2}$
ポアソン比	0.200	
単位体積重量	18.0 kN/m ³	

表 6.4.17 改良体諸元

なお、固化改良体のせん断弾性係数は以下の式にて設定した。

 $G = (100 \times q_{ua}) / (2 \times (1 + v))$

ここに、

G : せん断弾性係数

qua : 一軸圧縮強度

v : ポアソン比

(2) 耐震性能照査による対策工の検討

対策工諸元の設定において決定した対策工をモデル化した堤防断面において、変形解析を行った結果、沈下後堤防高が照査外水位を下回ったため、沈下後堤防高が照査外水位以上となる 対策工諸元を変形解析により検討した。対策工諸元設定の流れと決定した諸元を次頁に示す。

変形解析による対策工の検討については、改良体の幅、天端の高さ、根入れ、堤体下部への 改良幅を変化させて耐震性能を満足し且つ最小改良規模となる諸元を設定した。

表 6.4.18 対策工諸元設定の流れと決定諸元

対策工諸元の設定(外的内的安定計算)によって決定した対策工諸元(表 6.4.18 中①ケース)に ついて変形解析を行った結果を以下に示す。

表 6.4.19 耐震性能照査結果(その1)

表 6.4.18 中①ケースを基に、耐震性能を満足するように対策工諸元を見直した表 6.4.18 中②ケ ースについて変形解析を行った結果を以下に示す。

表 6.4.20 耐震性能照査結果(その2)

(4) 安定検討による対策工諸元の確認

耐震性能照査の結果、諸元の見直し(改良体の位置を盛土側に移動、改良体上面位置 の変更)を行ったため、見直し後の諸元に対して内的・外的安定の検討を実施した。そ の結果、内的・外的安定の全ての照査項目で照査基準を満足する結果であった。

	A	- 200		
	検討項目	単位	検討結果	
从的实空	滑動		$F_{\rm S} = 1.290 > 1.0$	O.K.
外的女化	支持力		$F_{\rm S} = 1.003 > 1.0$	O.K.
	水平せん断	kN/m ²	$\tau_1 = 37.9 < \tau_a = 200.0$	O.K.
内的安定	格子壁抜出しせん断	kN/m ²	$\tau_2 = 119.9 < \tau_a = 200.0$	O.K.
	鉛直せん断	kN/m ²	$\tau_{\rm v} = 192.3 < \tau_{\rm a} = 200.0$	O.K.

表 6.4.21 安定検討結果一覧表

6.4.3 浸透安全性照查

前項までに決定した対策工を入れた断面に対して、「河川堤防の構造検討の手引き」に準 じた検討を行い、液状化対策工によって現況に対して堤防の浸透安全性が有意に低下しな いことを照査した。

(1) 地盤モデルとパラメータ

地盤モデルとパラメータを6.2.1に示した通りである。6.2.1以外のパラメータは「河 川堤防の構造検討の手引き」に準拠した。

固結工の透水係数は 1×10⁻⁸(m/sec)とした。 浸透流解析に用いるメッシュは、自重変形解析のメッシュを準用した。

(2) 外力の設定

詳細に用いる降雨、洪水の外力は6.2.6に示した通りである。

(3) 解析結果

現況解析の結果と対策後の結果を下表に示す。

対策後(固結)の局所動水勾配(水平)が0.417から0.573に増加(安全率が低下)したため、補助対策工の検討を行った。ここではドレーン工を補助対策工に選定し、浸透安全性の照査を行った結果、局所動水勾配(水平)が0.381まで減少し、その他の項目 も全て現況を上回る結果となった。

検討な、ス	局所動	水勾配	円弧すべ	り安全率
使 前 ク ー ス	鉛直 iv	水平 ih	川表 Fs	川裏 Fs
現 況	0.313	0.417	0.783	0.752
固 結	0.311	0.573	0.755	0.724
固 結+ドレーン	0.202	0.381	0.782	0.844

表 6.4.22 浸透安全性の照査結果一覧

第7章 計算例5:鋼材を用いた工法による対策(その1)

7.1 設計手順

図 7.1.1 に鋼材を用いた工法の設計手順を示す。対策工の初期諸元は、弾性床上の梁に 土圧(漸増成分土圧、振動成分土圧)を作用させ、鋼材に発生する応力度が許容応力度以 下となる型式とそれに応じた根入れ長を繰返し計算により設定する。この対策工を入れた 断面においてレベル2 地震動に対する耐震性能照査(有限要素法による自重変形解析)を 実施する。その結果、耐震性能を満足しない場合には、型式を上げる等により対策工諸元 を見直し、耐震性能を満足する諸元を設定する。具体的には、鋼材の型式を上げる、もし くは、根入れ長を長くすることで最適諸元を求めることになるが、これらは現場条件や施 工条件などを総合的に判断して設定することが必要である。

次に、対策工実施により堤防の浸透安全性が有意に低下しないことを照査する、浸透安 全性が有意に低下する場合には、ドレーン工等の補助工法を検討したり、場合によっては 対策工法を変更する必要もある。

図 7.1.1 鋼材を用いた工法の設計手順

7.2 設計条件

7.2.1 地盤条件

(1) 基本諸元

図 7.2.1 に耐震性能照査の対象とする堤体および地盤構造を示す。表 7.2.1 には室内試験結果より設定した各層の地盤定数を示す。

液状化層が一層で比較的薄いモデルである。

図 7.2.1 耐震性能照査対象とする堤体および地盤構造

土層区分	土層厚 (m)	層区分	深度 (m)	N値	[平均値] N値	土の単位 体積重量 γ(kN/m ³)	[平均値] 細粒分 含有率 Fc(%)	土の 粘着力 c (kN/m ²)	土の 内部摩擦角 <i>φ</i> (゜)	透水係数 <i>k</i> (m/sec)
堤体	5.0	砂質土	-	-	5.0	18.0	35	0	30	$1.0 imes 10^{-6}$
沖積砂質土 As	5.0	砂質土 砂質土 砂質土	1.3 2.3 3.3 4.3	2 4 6 8	5.0	18.0	16	0	30	1.0×10^{-5}
洪積砂質土 Ds	3.0	<u>砂質土</u> 砂質土 砂質土	5.3 6.3 7.3	37 46 45	42.7	20.0	3	0	40	1.0×10^{-5}
洪積礫質土 Dg	-	<u>礫質土</u> 礫質土	8.3 9.3	50 50	50.0	21.0	-	0	40	$1.0 imes 10^{-4}$

表 7.2.1 地盤条件

(2) 地盤種別の判定

指針に基づき地盤種別の判定を行った。表 7.2.2 に地盤種別の判定結果を示す。洪積礫 質土層 Dg を耐震性能照査上の基盤面とし地盤の特性値 T_Gを算出すると、T_G=0.21(s)となる ため、本地盤は II 種地盤と判定される。

地層区分	地層厚 <i>H</i> i (m)	地層の 平均せん断 波速度 Vsi(m/s)	4 <i>Hi/V</i> si (s)	備考
沖積砂質土 As	5.0	120	0.167	各層のせん
洪積砂質土 Ds	3.0	280	0.043	め 仮 歴 し 、 PS 検 層 に て 確認さ れ て いろ
洪積礫質土 Dg	-	300	-	
		4Σ Hi×Vsi=	0.210	(Ⅱ種地盤)

表 7.2.2 耐震性能照査上の地盤種別の判定

7.2.2 入力地震動条件

入力地震動は、指針に基づき以下のように設定した。

1) 対策工諸元設定用震度

 $k_h = C_Z \times k_{GO}$

- kh : 対策工諸元設定用水平震度(0.15)
- kG0 : 地盤種別に応じた標準水平震度(Ⅱ種地盤:0.15)
- Cz : 地域別補正係数(地域区分A2:1.0)
- 2) レベル2地震動

 $k_{hgL} = C_Z \times k_{hgL0}$

- k_{hgl}: 液状化の判定に用いる地盤面の水平震度 (レベル 2-1 地震動: 0.45、レベル 2-2 地震動: 0.70)
- khgLo: 液状化の判定に用いる地盤面の水平震度の標準値

(Ⅱ種地盤、レベル 2-1 地震動:0.45、レベル 2-2 地震動:0.70)

Cz : 地域別補正係数(地域区分A2:1.0)

地震重	動	地盤 種別	k _{G0} k _{hgL0}	地域 区分	Cz	k_h k_{hgL}
対策工言 設定用意	者元 震度		015			0.15
レベル2	L2-1	Ⅱ種	0.45	A2	1.0	0.45
地震動	L2-2		0.70			0.70

表 7.2.3 入力地震動

7.2.3 液状化判定

指針に基づき液状化判定を実施した。図 7.2.2、表 7.2.4、表 7.2.5 に対策工諸元設定 用震度およびレベル2 地震動に対する液状化判定結果を示す。これより、沖積砂質土 As が 対策工諸元設定用震度およびレベル2 地震動に対する液状化層となる。

図 7.2.2 液状化に対する抵抗率 斤の深度方向分布

										対策工諸5	元設定用震度	14.57
土層区分	土層厚	層区分	深 (1)	N値	屠平均 31/4	土の単位 体積重量	酱粒分 約有樹	繰返し三軸 強度比	地震時せん断	動的 せん断	液状化に対する	
	(III)		(III)		17 旧	$\gamma(kN/m^3)$	FC (%)	$R_{\rm L}$	応力比 L	強度比 <i>R</i>	抵抗率 FL	判元結果
		砂質土	1.3	2		18	25	0.191	0.169	0.190	1.12	準液状化層
沖積砂質土	0	砂質土	2.3	4		18	18	0.215	0.211	0.214	1.01	準液状化層
\mathbf{As}	0.0	砂質土	3.3	9	0.0	18	12	0.224	0.233	0.223	0.95	完全液状化層
		砂質土	4.3	8		18	8	0.236	0.245	0.236	0.96	完全液状化層
十年日の		砂質土	5.3	37		20	4	I	,	ı	ı	
供信が見工	3.0	砂質土	6.3	46	42.7	20	2		'	'	'	
ŝ		砂質土	7.3	45		20	2	-	-	-	-	-
洪積礫質土		礫質土	8.3	50	50.0	21	-	-			-	-
Dg		礫質土	9.3	50	0.00	21						

(対策工諸元設定用震度)
液状化判定結果
長 7.2.4

表 7.2.5 液状化判定結果(レベル2地震動)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				(III)		砂鱼	沖積砂質土 2 砂區	As 3.0 砂蛋	砂堡	<u>洲津孙府</u> — 例 [法惧的具工 3.0 砂 6	ST	洪積礫質土 礫5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nth ± 0.0 km <th></th> <th>加加</th> <th>大分 (本)</th> <th>(III)</th> <th></th> <th>丁1</th> <th>質土 2</th> <th>重 世 3</th> <th>質土 4</th> <th>質土 5</th> <th>質土 6</th> <th>重土 7</th> <th>質土 8</th> <th></th>		加加	大分 (本)	(III)		丁 1	質土 2	重 世 3	質土 4	質土 5	質土 6	重土 7	質土 8	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$Herthy$ $\pm O^{\mu} t_{C}$ $\mu m t_{C}$			N値			1.3 2	2.3 4	3.3 6	1.3 8	5.3 37	5.3 46	7.3 45	3.3 50	
土の単位 細粒分 細粒分 細粒分 細粒分 小ベハン-1地震動 体積重量 含有率 強度比 地水 動的 淡状化に 地震時 $\gamma(kNm^3)$ $FC(%)$ R_1 地心斯 地方 対する 也心斯 $\gamma(kNm^3)$ $FC(%)$ R_1 広力比 強度比 拉小幣 芯力比 $\gamma(kNm^3)$ $FC(%)$ R_1 L R L L $\gamma(kNm^3)$ $FC(%)$ R_1 L R L L 18 25 0.191 0.506 0.190 0.333 0.935 18 12 0.224 0.693 0.214 0.33 0.985 20 4 $ 0.234$ 0.236 0.32 0.332 1.142 20 2 $ 0.236$ 0.32 0.985 20 2 $ 0.236$ 0.236 0.32 1.142 20 2 $-$	$\pm O$ 単位 細粒分 細粒分 細粒分 細粒分 細粒分 小/// 小 $1 - \langle N \rangle$ $1 - \langle N \rangle$ $1 - \langle N \rangle$ $\chi(kNm)$ $FC(\%)$ R_L $\pi k \pi h$ $\pi h h h h h h h h h$ $\pi h h h h h h h h h h h$ $\pi h h h h h h h h h h h h h h h h h h h$	層平均 N値					C II	0.0		-	42.7		2002		
細粒分 細粒分 着毒素 下C (%) FC (%) FC (%) R1 FC (%) R1 R1 R1 R1 R1 R1 R1 R1 R1 R1	細粒分 繰返し三軸 地震時 動的 次状化に 地震時 動的 含有率 強度比 せん断 せん断 が状子る せん断 せん断 形 た力比 強度比 た力比 強振率 応力比 強度時 動的 アレンド (%) Ru た力比 強度比 抵抗率 応力比 強度比 化 Rt FL L R 1 L R FL L R 1 0,506 0,190 0,37 0,787 0,296 0,314 1 0,506 0,190 0,37 0,787 0,296 0,314 1 1,086 0,314 0,33 0,985 0,296 1 1,142 0,314 0,314 0,314 0,314 1 1,086 0,314 0,314 0,314 0,314 0,314 1 1,086 0,314 0,314 0,314 0,314 0,314 0,314 1 1,086 0,314 0,314 0,314 0,314 0,314 0,314 1 1,086 0,314 0,314 0,314 0,314 0,314 0,314 0,314 0,314 0,314 1 1,086 0,314 0,3		土の単位	体積重量	$\gamma(kN/m^3)$		18	18	18	18	20	20	20	21	
単地震時 レバハ2-1地震動 繰返し三軸 地震時 動的 液状化に 地震時 強度比 也心断 並ん断 がする 也心断 花力比 地心断 旅状化に 地震時 市力比 Ru 広力比 油度比 拡抗率 也心断 Ru 0.0191 0.506 0.190 0.37 0.781 0.0191 0.6633 0.214 0.33 0.985 0.985 0.215 0.633 0.214 0.33 0.985 0.236 0.734 0.236 0.985 0.985 0.236 0.734 0.236 0.33 1.066 0.236 0.734 0.236 0.33 1.042 0.236 0.734 0.236 0.32 1.142	正 L R L L R L R L R L R L R R L R R L R R R L R		維約	含有率	FC(%)		25	18	12	8	4	2	2		
LV×1A2-1地震動 Lv×1A2-1地震動 地震時 動的 液状化に 地震時 せん断 せん断 対する せん断 花力比 油度比 拡加 L L R FL L 0.506 0.190 0.31 1.086 0.633 0.214 0.33 0.985 0.734 0.223 0.31 1.086 0.734 0.223 0.31 1.086 0.734 0.223 0.31 1.086 0.734 0.223 0.31 1.086 0.734 0.223 0.31 1.086 0.734 0.236 0.32 1.142	レベル2-1地震動 レベル2-1地震動 レベル2-1地震動 地震時 動的 液状化に 地震時 動的 せん断 せん断 液状化に 地震時 動的 でカ北 地ん断 液状化に 地震時 動的 た力比 強ん 市 セん断 セん断 応力比 水子る セん断 セん断 セん断 応力比 水子る セん セん ロー 0.506 0.190 0.37 0.787 0.247 0.653 0.214 0.33 0.985 0.296 0.734 0.236 0.31 1.086 0.314 0.734 0.236 0.32 1.142 0.342 0.734 0.236 0.32 1.142 0.342		繰返し三軸	強度比	$R_{ m L}$		0.191	0.215	0.224	0.236	'			-	
 ベル2-1地震動 ベル2-1地震動 動的 液状化に 地震時 せん節 速ん防 地ん節 拡大率 市力比 水する 市力比 市力比 レ 0.33 0.985 0.223 0.33 0.985 0.236 0.33 0.985 0.236 0.32 1.142 	 ベル2-1地震動 レン2-1地震動 他の約 液状化に 地心断 地心動約 他心動約 地心動約 地心動約 地心動約 地心動約 地心動約 地心動約 地方 地の約 ロック ロック<td>7</td><td>地震時</td><td>せん断</td><td>応力比</td><td>Г</td><td>0.506</td><td>0.633</td><td>0.698</td><td>0.734</td><td>1</td><td></td><td></td><td></td><td></td>	7	地震時	せん断	応力比	Г	0.506	0.633	0.698	0.734	1				
り 液状化に 地震時 液状化に 地震時 拡抗率 応力比 F _L L 0.33 0.985 0.33 0.985 0.33 1.142	り 液状化に 地震時 動的 液状化に 地震時 動的 抵抗率 応力比 強度比 FL L R 0.33 0.985 0.296 0.31 1.086 0.314 0.32 1.142 0.314 	ベル2-1地震重	動的	せん断	強度比	R	0.190	0.214	0.223	0.236	1				
地震時 中心勝 中心形 レ L 0.787 0.985 1.142 -	レンシル 地震時 動的 セル断 せん断 応力比 強度比 L R R 0.787 0.247 0.985 0.296 1.142 0.342 1.142 0.342	1 L	液状化に	対する	抵抗率	F_{L}	0.37	0.33	0.31	0.32					
	レベル 動的 市心野 電度片 R R 0.247 0.236 0.332 0.332 -		地震時	せん断	応力比	Г	0.787	0.985	1.086	1.142					
2-2出演動 次共化に 対寸る 放寸る 成式単 F1 0.31 0.29					制正結果		完全液状化層	完全液状化層	完全液状化層	完全液状化層					
			レベル2-14歳動 レベル2-14歳動 レベル2-14歳動	+ 四百 カンジャー ロッド エの単位 細粒分 繰返し三軸 地震時 動的 液状化に 地震時 動的 液状化に 地震時 動的 液状化に	上層厚 層区分 (20) (20) (20) (20) (20) (20) (20) (20)	土層区分 土層区分 (m) 個 (m)	上層区分 上層区分 (m) 個区分 (m) (土層区分 世間 層区分 With 世の単位 細粒分 細粒ら 細粒ら 細葉時 山 レベル2.1地震動 レベル2.1地震動 土層区分 (m) 修 With 水植 七の単位 細粒分 細度時 動的 液状化に 地震時 動的 液状化に (m) Nife Nife Nife Nife $\gamma(kNu)$ FC(%) R1 応力比 地方 セん断 社分断 対する 判定結果 (m) Nife (m) Nife Nife 0.01 0.01 0.00 0.01<	上層区分 世間 限区分 他 地信 世の単位 細粒分 細粒ら 細胞時 小水パに 地酸時 小水パに 小水パに 小水パに 小水パに 小水パに 小水パに 小水パに 小水パに 小水パに 小水パ オする 沖(市 沖(市 小 小水パに 小水パ 小水パ 小 小水パ 小 小水パ 小 小 小水パ 小	土層区分 (m) 際度 $L^{\circ}(\lambda_{2})$ L°	土層区分 (m) 標志 土の(K) 土の(K) レーベル2.1地震動 加 ボボパル ビー レーベル3.5 ビー レーベル2.1地震動 ボボパル ビー レーベル2.1 ビー レーベル2.1 ビー レーベル2.1 ビー ビ	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \ \ \ \ \ \ \ \ \ \ \ \ \ $

7.2.4 照査基準

レベル2地震動に対して、地震後の堤防高さが以下の外水位を下回らないことを照査する。

照查外水位 : EL.+2.5m

7.2.5 対策工諸元設定上の制約条件

図 7.2.3 に対策工諸元設定上の制約条件を示す。実際の検討断面では現地状況や施工条件等から様々な制約条件が設定される。本計算モデルでは、図に示すように、対策工は、 堤防のり尻から外側に実施することを条件として諸元を設定する。

図 7.2.3 対策工諸元設定上の制約条件

7.2.6 浸透安全性の評価に用いる外力

対策後に浸透安全性が現況に比べ有意に低下しないことを評価するために、「河川堤防の 構造検討の手引き」に準じて実施する。

ここでは、降雨、洪水の外力を以下の通りとした。

図 7.2.4 設定した降雨、洪水波形

7.3 現況の照査

現況堤防のレベル2地震動に対する耐震性能照査は、有限要素法による自重変形解析(静 的照査法)により実施した。

なお、解析モデルの右側地表に浮力補正バネを設定したのは、低水河岸の過剰な変形を 抑制するためである。バネはバネ下面の地盤の一要素幅に単位体積重量を乗じて設定した。

(1) 解析モデル

図 7.3.1 に解析モデルおよび設定パラメータを示す。また、解析上の地下水位および解 析モデルの境界条件は以下の通り設定する。

なお、解析モデルの右側地表に浮力補正バネを設定したのは、低水河岸の過剰な変形を 抑制するためである。

[地下水位]

先に示した地下水位から一律 0.5m 上側に設定することとし、EL.-0.5m とする。

[境界条件]

側方境界 : 付加地盤(左右両側共 50m)および鉛直ローラ (X 固定)

底面境界 : 固定 (X、Y 固定)

5	
\sim	
IN	
巜	
定	
影	

	1	0	1	1	1
n		2.(
補正係場 基準鉛直 有効応力 σ vo ['] (kN/m ²)		75		'	
初期水平 土圧係数 K	0.5	0.5	0.5	0.5	
引張強度 qt (kN/m ²)	0	0	0	0	
ダイレイ ダンジー角 (°)	10.0	10.0	15.0	I	
相救密度 Dr	I	50	I	ı	
ポアソン比	0.333	0.333	0.333	0.333	
せん断剛性 G (kN/m ²)	5250	5250	44850	52500	
繰返し 三軸強度比 RL	-	0.216	-	1	
透水係数 k (m/sec)	1.0×10^{-6}	1.0×10^{-5}	1.0×10^{-5}	$1.0 imes 10^4$	
土の 内部摩擦角 (°)	30	30	40	40	
土の 粘着力 c (kN/m ²)	0	0	0	0	「静定」
土の単位 体積重量 Y(kN/m ³)	18.0	18.0	20.0	21.0	* ケト限値)
N値	5.0	5.0	42.7	50.0	0 (15°
非線形タイプ	MC/DP 弾塑性モデル	MC/DP 弾塑性モデル	MC/DP 弾塑性モデル	線形弾性	tt. w= 4 −2
変形特性	連成要素	液状化要素	連成要素	連成要素	ンシー角 言い
土層区分	堤体B	沖積砂質土 As	洪積砂質土 Ds	洪積礫質土 Dg	※ダイレイタ、

図 7.3.1 解析モデル

(2) 耐震性能照査結果

図 7.3.2、図 7.3.3 に現況堤防のレベル2 地震動に対する耐震性能照査結果を示す。こ れより、レベル 2-1 地震動およびレベル 2-2 地震動ともに、地震後の堤防高さが照査外水位 を下回るため、対策工の検討が必要となる。

[照査結果]

レベル 2-1 地震動	:	(地震後堤防高さ)EL.+2.16m	<	(照查外水位)EL.+2.50m	(NG)
レベル 2-2 地震動	:	(地震後堤防高さ)EL.+1.95m	<	(照查外水位)EL.+2.50m	(NG)

(b)液状化に対する抵抗率 FL分布

図 7.3.2 レベル 2-1 地震動に対する照査結果

図 7.3.3 レベル 2-2 地震動に対する照査結果

7.4 対策後の照査

7.4.1 対策工諸元の設定

(1) 鋼材断面の仮定

使用する鋼材は、盛土の形状、液状化層の厚さ、液状化抵抗、地下水面、施工環境などを考慮して選定する。ここでは、従来のU形鋼矢板よりも経済性に優れたハット形鋼矢板のうち、 最小断面のSP-10Hを用いることとした。鋼材仕様および断面諸元を表7.4.1に示す。

X 7. T. I	
型式	SP-10H
材質	SYW295
許容応力度	270N/mm ²
腐食代	片面 1mm、両面 2mm
継手効率	断面二次モーメントおよび断面係数
	に関する継手効率は1.0
断面二次モーメント(壁幅 1m 当り)	10,500 cm ⁴ /m(腐食代なし)※
	8,300cm4/m(腐食代考慮)
断面係数(壁幅 1m 当り)	713cm ³ /m (腐食代考慮)

表 7.4.1 断面諸元

※例えば、出典「鋼管杭・鋼矢板技術協会:鋼矢板 設計から施工まで,2014.10,P7.」

(2) 水平方向地盤反力係数の算定

根入れ層となる、液状化層より下方に位置する非液状化層の地盤反力係数は、下式により算 定した。

 $k_{\rm H} = k_{\rm H0} (B_{\rm H} \swarrow 0.3)^{-3/4}$

 $k_{\rm H0} = (1/0.3) \ \alpha \cdot E_0$

ここに、

- k_H :水平方向の地盤反力係数(kN/m³)
- k_{H0}:直径0.30mの剛体円板による水平載荷試験の値に相当する水平方向地盤反力係数 (kN/m³)
- B_H:基礎の換算載荷幅(m)で、連続壁の場合、B_H=10mとする。
- E₀:設計の対象とする位置での地盤の変形係数(kN/m²)
- a:地盤反力係数の推定に用いる係数

非液状化層のN値を42.7として、E₀=2800N(α=2)より算定した結果を表7.4.2に示す。

	N 値	$k_{\rm H0}~({\rm kN/m^3})$	$k_{\rm H}~({\rm kN/m^3})$
Ds 層(非液状化層)	42.7	797,000	57,500

表 7.4.2 根入れ層の水平方向地盤反力係数

(3) 根入れ長の算定

根入れ層となる、液状化層の下方に位置する非液状化層への鋼矢板の必要根入れ長Lminは、水 平方向地盤反力係数と鋼材の曲げ剛性から算定した。根入れ長は、必要根入れ長以上に設定した。

$$L_{\min} = 2 \neq \beta$$

$$\beta = \{k_{\rm H} \cdot D \neq (4EI) \}^{-1/4}$$

$$= \{57,500 \times 1.0 \neq (4 \times 2.0 \times 10^8 \times 0.000105) \}^{-1/4}$$

$$= 0.91 \ (1/m)$$

$$L_{\min} = 2 \neq 0.91 = 2.20 \ (m)$$

ここに、

*L*_{min}: 必要根入れ長(m)

- β :特性值 (1/m)
- kH :水平方向の地盤反力係数(kN/m³)
- **D**:鋼材の単位幅(m)
- *E* : 鋼材の弾性係数(kN/m²)
- I :壁幅D当たりの鋼材の断面二次モーメント(腐食無し、継手効率1.0) (m⁴/m)

よって、鋼矢板の全長は以下となる。

(鋼矢板の全長) = (地表面から液状化層下端までの距離) + (根入れ長) =5.00+2.20=7.20 → 7.5m (0.5m 単位で切上げ)

(4) 検討断面の仮定

対策断面を図7.4.1に示す。鋼材は自立式構造とし、のり尻に設置する。

図 7.4.1 対策断面

(5) 作用荷重の算定

鋼矢板への作用荷重は、周辺地盤から鋼材に作用する土圧によるものであり、漸増成分と振 動成分に分けて算定する

1) 漸増成分荷重の算定

鋼材に作用する漸増成分荷重は、実験、解析から盛土下の液状化程度、鋼材のたわみ性(相 対剛性)、盛土形状等に依存することが確認されている。これらを考慮して、鋼材に作用する 液状化層の漸増成分荷重は以下の式を用いて算出した。

 $Ps = \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot F_{(z)}$

ここに、

Ps:漸増成分荷重

- α1:盛土下の液状化程度に関する係数
- α2: 鋼矢板の相対剛性に関する係数
- α3:盛土形状に関する係数
- F (z):漸増成分荷重の基本分布関数

*α*₁の算定

α1は、盛土下の液状化程度に関する係数であり、以下により求める。

 $\alpha_1 = r_{uB}$

ここに、

ruB:盛土下の過剰間隙水圧比

盛土下の過剰間隙水圧比 ruB は以下により求める。

 $r_{uB} = F_{LB}^{-7}$ (ただし、 $r_{uB} \leq r_{umax}$) $r_{umax} = 1 - a \quad (h \neq d_c)$ $a = 0.15 (1 \swarrow n - 0.1)$

ここに、

FLB:盛土の上載圧を考慮した盛土下の液状化抵抗率

- *h* : 盛土高さ (m)
- dc : 液状化層中央の深さ(m)
- *n* : 盛土ののり勾配(1:*n*)

2) F_{LB}の算定

対策工諸元設定用震度の盛土下液状化抵抗率 FLB を、盛土荷重による上載圧を考慮して算 定する。液状化抵抗率の算定位置は堤体天端部とし、盛土による土被り圧(上載圧)の増加 を加味して地震時せん断応力比(L)を算定の上、液状化抵抗率を算定した。液状化抵抗率の 算定結果の詳細一覧を表 7.4.3 に示す。堤体直下部では、深度 1.3m~4.3m(堤体天端からは 6.3m~9.3m)では、平均 FLB で 1.305 と、1.3 を上回っており、非液状化層となっている。

表 7.4.3 盛土下液状化抵抗率 FLB の算定結果

深度x	湿潤単重	有効単重	σv	σv	FLB	R	L	cw	RL
6.3	18	8	113.4	110.4	1.25	0.190	0.151	1.000	0.191
7.3	18	8	131.4	118.4	1.32	0.214	0.161	1.000	0.215
8.3	18	8	149.4	126.4	1.31	0.223	0.169	1.000	0.224
9.3	18	8	167.4	134.4	1.34	0.236	0.175	1.000	0.236

図 7.4.2 h、dc、nのとり方

よって、
$$r_{uB} \cdot r_{umax}$$
は以下のようになる。
 $r_{uB} = 0.000$ (非液状化層(平均 $F_{LB} = 1.305 > 1.3$)のため)
 $n = 10.0 / 5.0 = 2.00$

$$a=0.15 \times (1/2.00-0.1) = 0.060$$

 $r_{umax}=1-0.060 \cdot (5.0/2.5) = 0.880$
 a_1 は、 $r_{uB} \cdot r_{umax}$ のいずれか小さい方をとり、以下のようになる。
 $a_1=r_{uB}=0.000$ ($\leq r_{umax}=0.880$)

*α*₂の算定

$$\alpha_2 = 0.32 \times \log 10 (140.94) - 0.16 = 0.528$$

*α*₃の算定

α3は、盛土形状に関する補正係数であり、以下により求める。

 $a_3 = 0.0236 \ (B_u/2) \ -0.0126 \times B_b + 1.071 \ (ただし、6m \le B_u \le 20m, \ 10m \le B_b \le 20m)$ ここに、

- *B*_u : 盛土天端幅 (m)
- Bb : 盛土ののり肩からのり尻までの水平距離(m)
- よって、α3は、以下のようになる。

 $\alpha_3 = 0.0236 \times (6.0/2) - 0.0126 \times 10.0 + 1.071 = 1.016$

- a_3 の算定の適用範囲は $6m \leq B_u \leq 20m$ とあるが、 $B_u < 6m$ の場合(今回 $B_u = 5m$)は、便宜上、 安全側の評価として $B_u = 6m$ として計算を行った。
- •*F*(z)の算定

F(z)は、盛土漸増成分荷重の基本分布関数であり、以下による。これは、各種形状の盛 土を有する数値解析結果を近似的にまとめたものである。

F (z) = $\gamma_t \cdot h \cdot (0.00054z^3 - 0.0149z^2 + 0.140z + 0.275)$ (ただし、0m≤z≤10m) F (z) =0.725 $\gamma_t \cdot h$ (ただし、z>10m) ここに、

z : 地表面からの深さ(m)

γt :盛土の湿潤単位体積重量(kN/m³)

h :盛土高さ (m)

3) 振動成分荷重の算定

鋼材に作用する液状化層の振動成分荷重は、実験、解析から、鋼材のたわみ性(相対剛性) 等に依存することが確認されている。これらを考慮した、鋼材に作用する液状化層の振動成 分荷重を以下の式により求めた。

 $P_{\rm d} = \alpha_{\rm d} \cdot P_{\rm dmax}$

ここに、

P_d : 振動成分荷重

Pdmax: 振動成分荷重の最大値

α_d:鋼材の相対剛性に関する係数

・*P*dmaxの算定

Pdmax は、振動成分荷重の最大値であり、Westergardの式を基本として、以下により求める。

$$P_{d\max} = k(\gamma_w + \gamma' r_u) \sqrt{H_d z}$$

ここに、

k : 設計水平震度

γw:水の単位体積重量(kN/m³)

- γ': 土の水中単位体積重量(kN/m³)
- ru: 堤防盛土外側の平地盤部での過剰間隙水圧比
- H_d:水位面から最も下の液状化層下端までの距離(m)

z :地下水位からの深度(m)

*α*_dの算定

αdは、鋼材の相対剛性に関する係数であり、以下により求める。

 $\alpha_{\rm d} = 0.40 \cdot \log 10 \ (\rho) \ -0.40 \ (\hbar \hbar U, \ 0 \le \alpha_{\rm d} \le 1.0)$

$$\rho = 140.94$$

 $\alpha_d = 0.40 \times log 10 (140.94) - 0.40 = 0.460$

No	深度	k	r _u	γ'	$H_{\rm d}$	z	P _{dmax}	$lpha_{ m d}$	Pd
	(m)			(kN/m ³)	(m)	(m)	(kN/m ²)		(kN/m ²)
1	0.00	0.15		10.0	4.0			0.460	
2	0.25	0.15		10.0	4.0			0.460	
3	0.50	0.15		10.0	4.0			0.460	
4	0.75	0.15		10.0	4.0			0.460	
5	1.00	0.15	0.933	10.0	4.0	0.00	0.00	0.460	0.00
6	1.25	0.15	0.933	10.0	4.0	0.25	2.90	0.460	1.33
7	1.50	0.15	0.933	10.0	4.0	0.50	4.10	0.460	1.89
8	1.75	0.15	0.933	10.0	4.0	0.75	5.02	0.460	2.31
9	2.00	0.15	0.933	10.0	4.0	1.00	5.80	0.460	2.67
10	2.25	0.15	0.933	10.0	4.0	1.25	6.48	0.460	2.98
11	2.50	0.15	0.933	10.0	4.0	1.50	7.10	0.460	3.27
12	2.75	0.15	0.933	10.0	4.0	1.75	7.67	0.460	3.53
13	3.00	0.15	0.933	10.0	4.0	2.00	8.20	0.460	3.77
14	3.25	0.15	0.933	10.0	4.0	2.25	8.70	0.460	4.00
15	3.50	0.15	0.933	10.0	4.0	2.50	9.17	0.460	4.22
16	3.75	0.15	0.933	10.0	4.0	2.75	9.62	0.460	4.42
17	4.00	0.15	0.933	10.0	4.0	3.00	10.04	0.460	4.62
18	4.25	0.15	0.933	10.0	4.0	3.25	10.45	0.460	4.81
19	4.50	0.15	0.933	10.0	4.0	3.50	10.85	0.460	4.99
20	4.75	0.15	0.933	10.0	4.0	3.75	11.23	0.460	5.17
21	5.00	0.15	0.933	10.0	4.0	4.00	11.60	0.460	5.34

表 7.4.4 振動成分荷重の算定結果

※平均 F_L=1.01

 $r_{\rm u} = F_{\rm L}^{-7} = 1.01^{-7} = 0.933$

(6) 設計計算モデル

荷重および設計計算モデルは、液状化に対する抵抗率に従って分類した土層区分に基づき設定した。ここでの設計計算モデルを図7.4.3に示す。

図 7.4.3 設計計算モデル

(7) 計算結果および計算結果の照査

鋼材の設計計算結果より、対策工諸元設定用震度に対して、鋼材に発生する応力度が許容応 力度以内であることを照査した。

計算結果および応力度の照査結果を以下に示す。鋼矢仮に発生する断面応力度は、許容応力 度以内であった。曲げモーメント図を図7.4.4に示す。

・最大曲げモーメント: $M_{\text{max}} = 22.48$ kN・m/m

・断面応力度 : σ_{max}=*M*_{max}/Z=22.48×10⁶/713×10³=32N/mm²<270N/mm² ここに、

Z:断面係数

曲げモーメント

図 7.4.4 曲げモーメント図 (SP-10H)

7.4.2 耐震性能照查

7.4.1 によって設定した対策工を施した堤防のレベル2地震動に対する耐震性能について有限 要素法による自重変形解析により照査を行った。耐震性能を満足しない場合には、対策工諸元を 見直し、再度照査を行い、耐震性能を満たす対策工諸元を決定する。

(1) 対策工諸元

鋼矢板は弾性梁要素でモデル化した。なお、鋼矢板〜地盤間にジョイント要素は使用してい ない。鋼矢板の長さや弾性係数、断面二次モーメント等を鋼矢板諸元から設定した。物性値を 表7.4.5に示す。

矢板型式	矢板長	単位体積 重量	弾性係数	ポアソン比	断面積	断面 2 次 モーメン ト
	М	kN/m ³	kN/m ²		m²/m	m ⁴ /m
SP-10H	7.5	77	2.0×10^{8}	0.30	9.7×10 ⁻³	8.3×10 ⁻⁵

表 7.4.5 鋼矢板をモデル化した梁要素の物性値

(2) 解析結果

解析結果を表 7.4.6 に示す。いずれの地震動においても、地震後の堤防高さが耐震性能の 照査において考慮する外水位を上回っており、耐震性能を満足すると判定される。

ここでは、通常の矢板で検討を行ったが、排水機能付き矢板で検討すると過剰間隙水圧低 減効果から対策工諸元設定の段階で規格の小さいものが設定される場合もあり、耐震性能に 余裕がある場合は検討するとよい。

表 7.4.6 対策工諸元設定の流れと決定諸元

表 7.4.7 解析結果

7.4.3 浸透安全性照查

前項までに決定した対策工を入れた断面に対して、「河川堤防の構造検討の手引き」に準 じた検討を行い、液状化対策工によって現況に対して堤防の浸透安全性が有意に低下しな いことを照査した。

(1) 地盤モデルとパラメータ

地盤モデルとパラメータを7.2.1に示した通りである。7.2.1以外のパラメータは「河 川堤防の構造検討の手引き」に準拠した。

浸透流解析に用いるメッシュは、自重変形解析のメッシュを準用した。

(2) 外力の設定

詳細に用いる降雨、洪水の外力は7.2.6 に示した通りである。

(3) 解析結果

現況解析の結果と対策後の結果を表 7.4.8 に示す。

対策後(矢板工)の局所動水勾配(水平)が0.524から1.050に増加(安全性が低下) したため、補助対策工の検討を行った。ここではドレーン工を補助対策工に選定し、浸 透安全性の照査を行った結果、局所動水勾配(水平)が0.448まで減少し、その他の項 目も全て現況を上回る結果となった。

やきた。フ	局所動	水勾配	円弧すべ	り安全率
(検討クース)	鉛直 iv	水平 ih	川表 Fs	川裏 Fs
現 況	0.447	0.524	0.805	0.757
矢板工	0.146	1.050	0.803	0.744
矢板工+ドレーン	0.134	0.448	0.821	0.935

表 7.4.8 浸透安全性の照査結果一覧

(4) 透水性矢板の適用

鋼矢板に透水性鋼矢板を適用した場合を検討する。

「河川堤防の構造検討の手引き」より、通常の矢板の透水係数はメッシュサイズを 100cmとすると1.0×10⁻⁷(m/sec)と設定される。ここで、原地盤の透水係数は 1.0×10⁻⁵(m/sec)で、透水性矢板の開口率を1%とすると、透水性矢板の透水係数は、

 $k=1.0\times10^{-7}\times0.99+1.0\times10^{-5}\times0.01=2.0\times10^{-7}$ (m/sec) となる。

図 7.4.5 透水性矢板イメージ

この物性値を用いて局所動水勾配を算出すると表7.4.9となる。

透水性矢板の水平の動水勾配の値は通常の矢板に比べると小さくなったが、現況に 比べると有意に大きな値となった。

本モデルでは効果的な結果とならなかったが、地盤条件などによっては補助対策と して効果的な場合もある。

検討ケーフ	局所動	水勾配
便 <u>前</u> 7 — A	鉛直 iv	水平 ih
現 況	0.447	0.524
矢板工(通常)	0.146	1.050
矢板工(透水性)	0.163	1.023

表 7.4.9 浸透安全性の照査結果一覧

7.4.4 対策工諸元設定震度における液状化層がない場合の設計方法

(1) 設計概要

対策工諸元設定用震度に対する液状化層が存在しない場合には、まず、耐震性能を満足 する鋼材と根入れ長の組合せを設定する。次に、レベル2地震動に対する液状化に対する 抵抗率 FL を使って、液状化層/準液状化層/非液状化層を区分し、対策工諸元設定用震度を 用いて、設定した鋼材に発生する応力度が許容応力度以内であることを照査する。その際 に、根入れ層の地盤反力は受働土圧相当を上限として、液状化層等からの土水圧によるモ ーメントが根入れ層の地盤反力によるモーメントを上回った場合には、モーメントが釣り 合うところまで液状化層等からの土水圧を低減する。

ここで、対策工諸元設定用震度に対する液状化層が存在しない場合の計算方法を例示する。

地盤モデル、物性値、および液状化判定結果は図7.4.6、表7.4.11、表7.4.12 に示すものとする。この地盤モデルは本章の地盤モデルの液状化層(As 層)のN値を大きくし、対策工諸元設定用震度に対する液状化層が存在しない地盤としたものである。その他の条件については本章のモデルに従うものとする。

図 7.4.6 地盤モデル図

表	7.4	1.1	地盤の物性値
-			

土層区分	土層厚 (m)	層区分	深度 (m)	N值	[平均値] N値	土の単位 体積重量 γ(kN/m ³)	[平均值] 細粒分 含有率 Fc(%)	[平均値] 繰返し三軸 強度比 RL	土の 粘着力 c (kN/m ²)	土の 内部摩擦角 (⁰)	透水係数 k (m/sec)
堤体	5.0	砂質土	-	-	5.0	18.0	35	-	0	30	1.0×10^{-6}
		砂質土	1.3	2							
沖積砂質土	5.0	砂質土	2.3	4	5.5	18.0	16	0.222	0	20	1.0 10-5
As	5.0	砂質土	3.3	7	5.5	18.0	10	0.222	0	50	1.0×10
		砂質土	4.3	9							
ALERTON RE L		砂質土	5.3	37							
洪恒伊賀工 Ds	3.0	砂質土	6.3	46	42.7	20.0	3	-	0	40	1.0×10^{-5}
		砂質土	7.3	45							
洪積礫質土		碟質土	8.3	50	50.0	21.0			0	40	1.010 ⁻⁴
Dg	-	碟質土	9.3	50	50.0	21.0	-	-	0	40	1.0 × 10

表 7.4.12 液状化判定

									対策工諸	皆元設定用震度	レベノ	レ2-1地震動	レベノ	レ2-2地震動
土層区分	土層厚 (m)	層区分	深度 (m)	N値	層平均 N値	土の単位 体積重量 γ(kN/m ³)	細粒分 含有率 Fc(%)	繰返し三軸 強度比 RL	液状化に 対する 抵抗率 FL	判定結果	被状化に 対する 抵抗率 FL	判定結果	液状化に 対する 抵抗率 FL	判定結果
		砂質土	1.3	2		18	25	0.191	1.12	準液状化層	0.37	完全液状化層	0.31	完全液状化層
沖積砂質土	5.0	砂質土	2.3	4	5.5	18	18	0.215	1.01	準液状化層	0.33	完全液状化層	0.30	完全液状化層
As	5.0	砂質土	3.3	7	5.5	18	12	0.238	1.02	準液状化層	0.34	完全液状化層	0.31	完全液状化層
		砂質土	4.3	9		18	8	0.248	1.01	準液状化層	0.33	完全液状化層	0.32	完全液状化層
→井 手座 ひいがた 上。		砂質土	5.3	37		20	4	-	-	-	-	-	-	-
代担党員上	3.0	砂質土	6.3	46	42.7	20	2	-	-	-	-	-	-	-
Ds		砂質土	7.3	45		20	2	-	-	-	-	-	-	-
洪積礫質土		礫質土	8.3	50	50.0	21	-	-	-	-	-	-	-	-
Dg	-	礫質土	9.3	50	50.0	21	-	-	-	-	-	-	-	-

(2) 耐震性能を満足する鋼材と根入れ長の組合せの設定

耐震性能照査により、鋼材は SP-10H、長さ 6.5m で耐震性能を満足する結果となった。なお、非液状化層への根入れ長は 1.5m となり、7.4.1(3) に示した方法による根入れ長(2.5m) より短くなっている。

(3) 矢板の応力照査

1) 土水圧の算出

表 7.4.12 に示すレベル 2 地震動に対する液状化に対する抵抗率 FL より、As 層が液状化 層、Ds 層が非液状化層と区分した。As 層を液状化層として鋼材に掛かる土水圧(漸増成分・ 振動成分荷重)を算出した結果を図 7.4.8 に示す。荷重を算出する際の慣性力は、対策工 諸元設定用震度とした。

図 7.4.8 荷重分布図

図 7.4.9 受働土圧分布図

2) 鋼材先端周りのモーメントの算出と土水圧の低減

根入れ層の地盤反力として手引き 6.6 (6.9) 式より図 7.4.9 に示す受働土圧を算出し、 土水圧と受働土圧の矢板先端周りのモーメントを比較した。モーメントの合計は土水圧が 40 (kN・m/m) に対して、受働土圧は 351 (kN・m/m) となり、受働土圧によるモーメントが鋼材 に掛かる土水圧によるモーメントを上回ったため、低減は行わない。下回った場合は双方 のモーメントが釣り合うように土水圧を低減させる。

3) 鋼材に発生する応力度

鋼材の設計計算結果より、対策工諸元設定用震度に対して鋼材に発生する応力度が許 容応力度以内であることを照査した。

応力度の照査結果を以下に示す。鋼矢仮に発生する断面応力度は、許容応力度以内で あった。

- ・最大曲げモーメント: M_{max} =21.06kN・m/m
- ・断面応力度 : σ_{max}=M_{max}/Z=21.06×10⁶/713×10³=30N/mm²<270N/mm² ここに、
 - Z:断面係数

第8章 計算例 6:鋼材を用いた工法による対策(その2)

8.1 設計手順

図 8.1.1 に鋼材を用いた工法の設計手順を示す。対策工の初期諸元は、弾性床上の梁に 土圧(漸増成分土圧、振動成分土圧)を作用させ、鋼材に発生する応力度が許容応力度以 下となる型式とそれに応じた根入れ長を繰返し計算により設定する。この対策工を入れた 断面においてレベル2 地震動に対する耐震性能照査(有限要素法による自重変形解析)を 実施する。その結果、耐震性能を満足しない場合には、型式を上げる等により対策工諸元 を見直し、耐震性能を満足する諸元を設定する。具体的には、鋼材の型式を上げる、もし くは、根入れ長を長くすることで最適諸元を求めることになるが、これらは現場条件や施 工条件などを総合的に判断して設定することが必要である。

次に、対策工実施により堤防の浸透安全性が有意に低下しないことを照査し、浸透安全 性が有意に低下する場合には、ドレーン工等の補助工法を検討したり、場合によっては対 策工法を変更する必要もある。

図 8.1.1 鋼材を用いた工法の設計手順

8.2 設計条件

8.2.1 地盤条件

(1) 基本諸元

図 8.2.1 に耐震性能照査の対象とする堤体および地盤構造を示す。表 8.2.1 には室内試験結果より設定した各層の地盤定数を示す。

液状化層の間に非液状化層(粘性土層)が狭在するモデルである。

図 8.2.1 耐震性能照査対象とする堤体および地盤構造

土層区分	土層厚 (m)	層区分	深度 (m)	N 値	[平均値] N値	土の単位 体積重量 γ(kN/m ³)	[平均値] 細粒分 含有率 Fc(%)	土の 粘着力 c (kN/m ²)	土の 内部摩擦角 	透水係数 <i>k</i> (m/sec)
堤体	5.0	砂質土	-	-	5.0	18.0	35	0	30	$1.0 imes 10^{-6}$
沖積砂質土 As1	5.0	砂質土 砂質土 砂質土	1.3 2.3 3.3 4.3	2 3 5 4	3.5	18.0	22	0	30	1.0×10^{-5}
沖積粘性土 Ac1	3.0	<u>粘性土</u> 粘性土 粘性土	5.3 6.3 7.3	2 1 1	1.3	17.0	65	堤体直下:50 非堤体直下: 40	0	$1.0 imes 10^{-8}$
沖積砂質土 As2	5.0	砂質土 砂質土 砂質土 砂質土 砂質土	8.3 9.3 10.3 11.3 12.3	6 10 12 15 10	10.6	19.0	32	0	30	1.0×10^{-5}
沖積粘性土	5.0	粘性土 粘性土 粘性土 粘性土 粘性土 粘性土	13.3 14.3 15.3 16.3 17.3	4 2 1 1 2	16	17.0	07	55	0	10.108
Ac2	5.0	粘性土 粘性土 粘性土 粘性土 粘性土	18.3 19.3 20.3 21.3 22.3	2 1 2 2 6	1.0	17.0	87	70	0	1.0 × 10 °
洪積礫質土 Dg	-	<u>礫質土</u> 礫質土 礫質土	23.3 24.3 25.3	35 50 50	50.0	21.0	-	-	40	1.0×10^{-4}

表 8.2.1 地盤条件

(2) 地盤種別の判定

指針に基づき地盤種別の判定を行った。表 8.2.2 に地盤種別の判定結果を示す。洪積礫 質土層 Dg を耐震性能照査上の基盤面とし地盤の特性値 T_G を算出すると、 $T_G=0.727(s)$ とな るため、本地盤はIII種地盤と判定される。

地層区分	地層厚 Hi (m)	地層の 平均せん断 波速度 Vsi(m/s)	4Hi/Vsi (s)	備考
沖積砂質土 As1	5.0	120	0.167	
沖積粘性土 Ac1	3.0	110	0.109	各層のせん
沖積砂質土 As2	5.0	170	0.118	断波速度 は、PS検層 にて確認さ
沖積粘性土 Ac2	10.0	120	0.333	れている
洪積礫質土 Dg	-	300		
		4Σ Hi/Vsi=	0.727	(Ⅲ種地盤)

表 8.2.2 耐震性能照査上の地盤種別の判定

8.2.2 入力地震動条件

入力地震動は、指針に基づき以下のように設定した。

1) 対策工諸元設定用震度

 $k_h = C_Z \times k_{GO}$

- k_h : 対策工諸元設定用水平震度(0.18)
- k₆₀ : 地盤種別に応じた標準水平震度(Ⅲ種地盤:0.18)
- Cz : 地域別補正係数(地域区分 A2:1.0)

2) レベル2地震動

 $k_{hgL} = C_Z \times k_{hgL0}$

- k_{hgl}: 液状化の判定に用いる地盤面の水平震度 (レベル 2-1 地震動: 0.40、レベル 2-2 地震動: 0.60)
- khgL0: 液状化の判定に用いる地盤面の水平震度の標準値

(Ⅲ種地盤、レベル 2-1 地震動:0.40、レベル 2-2 地震動:0.60)

Cz : 地域別補正係数(地域区分A2:1.0)

地震重	動	地盤 種別	k _{G0} k _{hgL0}	地域 区分	Cz	k_h k_{hgL}
対策工言 設定用意	者元 震度		018			0.18
レベル2	L2-1	Ⅲ種	0.40	A2	1.0	0.40
地震動	L2-2		0.60			0.60

表 8.2.3 入力地震動

8.2.3 液状化判定

指針に基づき液状化判定を実施した。図 8.2.2、表 8.2.4、表 8.2.5 に対策工諸元設定 用震度およびレベル 2 地震動に対する液状化判定結果を示す。これより、沖積砂質土 As1、 As2 が対策工諸元設定用震度およびレベル 2 地震動に対する液状化層となる。

図 8.2.2 液状化に対する抵抗率 斤の深度方向分布

										対策工諸う	元設定用震度	11.4
土層区分	土層厚 (m)	層区分	深度 (m)	N値	層平均 N値	土の単位 体積重量 _{γ(kN/m³)}	維粒分 含有率 <i>FC</i> (%)	繰返し三軸 強度比 <i>R</i> L	地震時	動的	液状化に 対する 抵抗率 FL	判定結果
		砂質土	1.3	2.0		18	20	1		1		
沖積砂質土	0	砂質土	2.3	3.0	u c	18	25	0.208	0.215	0.207	0.96	完全液状化層
$A_{S}1$	0.0	砂質土	3.3	5.0		18	18	0.223	0.245	0.223	0.91	完全液状化層
		砂質土	4.3	4.0		18	23	0.213	0.264	0.213	0.80	完全液状化層
十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十		粘性土	5.3	2.0		17	60					
1111月4日11上一	3.0	粘性土	6.3	1.0	1.3	17	70					
174		粘性土	7.3	1.0		17	65					
		砂質土	8.3	6.0		19	45	0.308	0.294	0.308	1.04	準液状化層
计相对所上		砂質土	9.3	10.0		19	32	0.314	0.293	0.313	1.06	準液状化層
作項110頁上	5.0	砂質土	10.3	12.0	10.6	19	28	0.321	0.291	0.321	1.10	準液状化層
794		砂質土	11.3	15.0		19	20	0.310	0.288	0.309	1.07	準液状化層
		砂質土	12.3	10.0		19	33	0.289	0.285	0.289	1.01	準液状化層
		粘性土	13.3	4.0		17	73	-	-	-	-	
		粘性土	14.3	2.0		17	83	-	-	-	-	-
	5.0	粘性土	15.3	1.0		17	06	'			1	
		粘性土	16.3	1.0		17	93	'		1	,	
沖積粘性土		粘性土	17.3	2.0	71	17	86	-		-	-	
Ac2		粘性土	18.3	2.0	0.1	17	28	1		1	'	
		粘性土	19.3	1.0		17	16	'	-	-	-	
	5.0	粘性土	20.3	2.0		17	87	-		I		
		粘性土	21.3	2.0		17	85	-	-	-	-	-
		粘性土	22.3	6.0		17	65	-	-	-	-	
计基础好十		礫質土	23.3	35.0		21	40	-	-	-	1	
法頃採具上	ı	礫質土	24.3	50.0	50.0	21	15	1		1	'	
n n		礫質土	25.3	50.0		21	10	-				

表 8.2.4 液状化判定結果(対策工諸元設定用震度)

									2	ベルク-1地電車	4		ラン	の一切物電動	
						上注金二	America 2	14 1 11 12	1			1	· · · · ·		
	画園十		浴雨		國亚枌	土の単位	細粒分	繰返し三軸	地震時	動的	液状化に	地震時	動的	液状化に	
土層区分	+(=)	層区分	X (11)	N値	/亘 / ~~	体積重量	含有率	強度比	せん断	せん野	対する	せん断	せん野	対する	日十字十三字
	(IIII)		(III)		페. M	γ (kN/m ³)	FC (%)	$R_{\rm L}$	応力比	強度比	抵抗率	応力比	強度比	抵抗率	刊
									L	R	F_{L}	L	R	F_{L}	
		砂質土	1.3	2.0		18	20				-			1	-
沖積砂質土	03	砂質土	2.3	3.0	ч с	18	25	0.208	0.479	0.207	0.43	0.718	0.281	0.39	完全液状化層
As1	0.0	砂質土	3.3	5.0	C.C	18	18	0.223	0.546	0.223	0.40	0.818	0.313	0.38	完全液状化層
		砂質土	4.3	4.0		18	23	0.213	0.586	0.213	0.36	0.879	0.293	0.33	完全液状化層
十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十		粘性土	5.3	2.0		17	09								
111頃4回1五二	3.0	粘性土	6.3	1.0	1.3	17	70								
104		粘性土	7.3	1.0	2	17	65								
		砂質土	8.3	6.0		19	45	0.308	0.653	0.308	0.47	0.979	0.520	0.53	完全液状化層
计错误员士		砂質土	9.3	10.0	;	19	32	0.314	0.650	0.313	0.48	0.975	0.534	0.54	完全液状化層
111位111日	5.0	砂質土	10.3	12.0	10.6	19	28	0.321	0.646	0.321	0.49	0.969	0.555	0.57	完全液状化層
794		砂質土	11.3	15.0	,	19	20	0.310	0.640	0.309	0.48	0.96	0.523	0.54	完全液状化層
		砂質土	12.3	10.0		19	33	0.289	0.633	0.289	0.45	0.95	0.469	0.49	完全液状化層
		粘性土	13.3	4.0		17	73		-		-				
		粘性土	14.3	2.0		17	83		-	-	-				
	5.0	粘性土	15.3	1.0	,	17	90								
		粘性土	16.3	1.0		17	93	-	-	-	-	-		-	-
沖積粘性土		粘性土	17.3	2.0	7	17	86	-	-	1	-		-	-	
Ac2		粘性土	18.3	2.0	0.1	17	84	-	-		-	-	-		
		粘性土	19.3	1.0	, ,	17	91	-	-	-	-	-			-
	5.0	粘性土	20.3	2.0		17	87	-	-	1	-	-	-	-	
		粘性土	21.3	2.0		17	85		-	1			1		
		粘性土	22.3	6.0	2	17	65								
计结验位于		礫質土	23.3	35.0		21	40	-	-	-	-	-	-	-	-
法俱候具上 De	,	礫質土	24.3	50.0	50.0	21	15	-	-	-	-	-	-	-	
22		礫質土	25.3	50.0		21	10	-	-	-	-	-	-	-	-

表 8.2.5 液状化判定結果(レベル2地震動)

8.2.4 照査基準

レベル2地震動に対して、地震後の堤防高さが以下の外水位を下回らないことを照査する。

照查外水位 : EL.+2.5m

8.2.5 対策工諸元設定上の制約条件

図 8.2.3 に対策工諸元設定上の制約条件を示す。実際の検討断面では現地状況や施工条件等から様々な制約条件が設定される。本計算モデルでは、図に示すように、対策工は、 堤防のり尻から外側に実施することを条件として諸元を設定する。

図 8.2.3 対策工諸元設定上の制約条件

8.2.6 浸透安全性の評価に用いる外力

対策後に浸透安全性が現況に比べ有意に低下しないことを評価するために、「河川堤防の 構造検討の手引き」に準じて実施する。

ここでは、降雨、洪水の外力を以下の通りとした。

図 8.2.4 設定した降雨、洪水波形

8.3 現況の照査

現況堤防のレベル2地震動に対する耐震性能照査は、有限要素法による自重変形解析(静 的照査法)により実施した。

なお、解析モデルの右側地表に浮力補正バネを設定したのは、低水河岸の過剰な変形を 抑制するためである。バネはバネ下面の地盤の一要素幅に単位体積重量を乗じて設定した。

(1) 解析モデル

図 8.3.1 に解析モデルおよび設定パラメータを示す。また、解析上の地下水位および解 析モデルの境界条件は以下の通り設定した。

[地下水位]

先に示した地下水位から一律 0.5m 上側に設定することとし、EL.-1.0m とする。

[境界条件]

側方境界 : 付加地盤(左右両側共 50m)および鉛直ローラ(X 固定) 底面境界 : 固定(X、Y 固定)

Aci Ac2 Ac2 Ac2 Ac2	Asl Action Action Action Action Dg	Asl Acl Acl Ac2 Ac2 Ac2	人 加 次 加 次					水位 水位 (1) (1) (1) (1) (1) (1) (1) (1)		
								側万境外条件 底面境界条件	:付加地盤、 :固定	111日日 11日日 11日日 11日日 11日日 11日日 11日日 11
七の 内部摩擦 ゆ (?)	土の 内部摩擦 (3)	角	透水係数 k (m/sec)	繰返し 三軸強度比 RL	せん断剛性 G (kN/m ²)	ポアンン比 4	br Dr	イレイ シー角 サ (c) (kN/m ²)	初期	補正係数C
	0	30	$1.0 imes 10^{-6}$	I	5250	0.333	'	10.0	0.5	1
	0	30	$1.0 imes 10^{-5}$	0.214	3680	0.333	40	10.0	0.5	75
	₹:50 ₹:40	0	$1.0 imes 10^{-8}$	I	2150	0.333		0.0	0.5	
ũ	3	0	$1.0 imes 10^{-5}$	0.308	11100	0.333	50	10.0	0.5	1
C	55 70	0	$1.0 imes 10^{-8}$	I	2640	0.333	,	0.0	0.5	,
4	-	0	$1.0 imes 10^{-4}$		52500	0.333	ı	-	0.5	

図 8.3.1 解析モデル

(2) 耐震性能照查結果

図 8.3.2、図 8.3.3 に現況堤防のレベル 2 地震動に対する耐震性能照査結果を示す。これより、レベル 2-1 地震動およびレベル 2-2 地震動ともに、地震後の堤防高さが照査外水位を下回るため、対策工の検討が必要となる。

[照査結果]

レベル 2-1 地震動	:	(地震後堤防高さ)EL.+2.04m	<	(照查外水位)EL.+2.50m	(NG)
レベル 2-2 地震動	:	(地震後堤防高さ)EL.+1.93m	<	(照查外水位)EL.+2.50m	(NG)

図 8.3.2 レベル 2-1 地震動に対する照査結果

の次代にに対する技巧中に力引

図 8.3.3 レベル 2-2 地震動に対する照査結果

8.4 対策後の照査

8.4.1 対策工諸元の設定

(1) 鋼材断面の仮定

使用する鋼材は、盛土の形状、液状化層の厚さ、液状化抵抗、地下水面、施工環境などを考慮して選定する。ここでは、従来のU形鋼矢板よりも経済性に優れたハット形鋼矢板のうち、 最小断面のSP-10Hを用いることとする。鋼材仕様および断面諸元を**表 8.4.1**に示す。

1X 0. T. I	
型式	SP-10H
材質	SYW295
許容応力度	270N/mm ²
腐食代	片面 1mm、両面 2mm
継手効率	断面二次モーメントおよび断面係数
	に関する継手効率は1.0
断面二次モーメント(壁幅 1m 当り)	10,500 cm ⁴ /m(腐食代なし)※
	8,300cm4/m(腐食代考慮)
断面係数(壁幅 1m 当り)	713cm ³ /m(腐食代考慮)

表 8.4.1 断面諸元

※例えば、出典「鋼管杭・鋼矢板技術協会:鋼矢板 設計から施工まで,2014.10,P7.」

(2) 水平方向地盤反力係数の算定

根入れ層となる、液状化層より下方に位置する非液状化層の地盤反力係数は、下式により算 定した。

 $k_{\rm H} = k_{\rm H0} (B_{\rm H} \swarrow 0.3)^{-3/4}$

 $k_{\rm H0} = (1/0.3) \ \alpha \cdot E_0$

ここに、

- k_H : 水平方向の地盤反カ係数(kN/m³)
- k_{H0}: 直径0.30mの剛体円板による水平載荷試験の値に相当する水平方向地盤反力係数 (kN/m³)
- B_H: 基礎の換算載荷幅(m)で、連続壁の場合、B_H=10mとする。
- E₀:設計の対象とする位置での地盤の変形係数(kN/m²)
- a : 地盤反力係数の推定に用いる係数

Ac1層(非液状化層)のN値を1.3、As2層(準液状化層)のN値を10.6として、*E*₀=2800N(α= 2)より算定した結果を**表**8.4.2に示す。

	N 値	$k_{\rm H0}~({\rm kN/m^3})$	$k_{\rm H}~({\rm kN/m^3})$
Ac1 層(非液状化層)	1.3	24,267	1,749
As2 層(準液状化層)	10.6	197,867	4,777

表 8.4.2 根入れ層の水平方向地盤反力係数

(3) 根入れ長の算定

根入れ層となる、液状化層の下方に位置する非液状化層への鋼矢板の必要根入れ長Lminは、水 平方向地盤反力係数と鋼材の曲げ剛性から算定した。根入れ長は、必要根入れ長以上に設定した。

L_{min}: 必要根入れ長(m)

- *L*_i : 各層の層厚(m)
- *β*_i :特性值 (1/m)
- k_H :水平方向の地盤反力係数(kN/m³)
- **D**:鋼材の単位幅(m)
- *E* : 鋼材の弾性係数(kN/m²)
- I :壁幅D当たりの鋼材の断面二次モーメント(腐食無し、継手効率1.0) (m⁴/m)

よって、鋼矢板の全長は以下となる。

(鋼矢板の全長) = (地表面から液状化層下端までの距離) + (根入れ長) =5.00+4.77 = 9.77 → 10.0m (0.5m 単位で切上げ〉

(4) 検討断面の仮定

対策断面を図8.4.1に示す。鋼材は自立式構造とし、のり尻に設置する。

図 8.4.1 対策断面

(5) 作用荷重の算定

鋼矢板への作用荷重は、周辺地盤から鋼材に作用する土圧によるものであり、漸増成分と振 動成分に分けて算定する。

1) 漸増成分荷重の算定

鋼材に作用する漸増成分荷重は、実験、解析から盛土下の液状化程度、鋼材のたわみ性(相 対剛性)、盛土形状等に依存することが確認されている。これらを考慮して、鋼材に作用する 液状化層の漸増成分荷重は以下の式を用いて算出した。

$P_{s} = \alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \cdot F(z)$

ここに、

- P_s : 漸増成分荷重
- α1:盛土下の液状化程度に関する係数
- *α*₂:鋼矢板の相対剛性に関する係数
- *α*₃:盛土形状に関する係数
- F(z):漸増成分荷重の基本分布関数

*α*₁の算定

a₁は、盛土下の液状化程度に関する係数であり、以下により求める。

 $\alpha_1 = r_{uB}$

ここに、

ruB:盛土下の過剰間隙水圧比

盛土下の過剰間隙水圧比 ruB は以下により求める。

 $r_{\rm uB} = F_{\rm LB}^{-7}$ (ただし、 $r_{\rm uB} \le r_{\rm umax}$) $r_{\rm umax} = 1 - a \ (h / d_{\rm c})$ $a = 0.15 \ (1 / n - 0.1)$

- ここに、
 - FLB : 盛土の上載圧を考慮した盛土下の液状化抵抗率
 - *h* : 盛土高さ (m)
 - *d*_c : 液状化層中央の深さ(m)
 - *n* : 盛土ののり勾配 (1:*n*)

2) F_{LB}の算定

対策工諸元設定用震度の盛土下液状化抵抗率 FLB を、盛土荷重による上載圧を考慮して算定 する。液状化抵抗率の算定位置は堤体天端部とし、盛土による土被り圧(上載圧)の増加を加 味して地震時せん断応力比(L)を算定の上、液状化抵抗率を算定した。液状化抵抗率の算定結 果の詳細一覧を表 8.4.3 に示す。堤体直下部では、As1 層:深度 2.3m~4.3m(堤体天端からは 7.3m~9.3m)では、平均 FLB は 1.206(1.0 以上 1.3 以下)であり準液状化層となっている。As2 層:深度 8.3m~12.3m(堤体天端からは 13.3m~17.3m)では、平均 FLB は 1.3 を上回っており、 非液状化層となっている。

深度x	湿潤単重	有効単重	σv	σv	FLB	R	L	cw	RL
6.3	18.0	18.0	113.4	113.4	-	-	0.163	1.000	-
7.3	18.0	8.2	131.4	123.6	1.220	0.208	0.170	1.000	0.208
8.3	18.0	8.2	149.4	131.8	1.248	0.223	0.179	1.000	0.223
9.3	18.0	8.2	167.4	140.0	1.150	0.213	0.185	1.000	0.213
10.3	17.0	7.2	185.1	147.9	-	-	0.191	1.000	-
11.3	17.0	7.2	202.1	155.1	-	-	0.195	1.000	-
12.3	17.0	7.2	219.1	162.3	-	-	0.198	1.000	-
13.3	19.0	9.2	236.7	170.1	1.536	0.308	0.201	1.000	0.308
14.3	19.0	9.2	255.7	179.3	1.557	0.314	0.202	1.000	0.314
15.3	19.0	9.2	274.7	188.5	1.588	0.321	0.202	1.000	0.321
16.3	19.0	9.2	293.7	197.7	1.534	0.310	0.202	1.000	0.310
17.3	19.0	9.2	312.7	206.9	1.434	0.289	0.201	1.000	0.289

表 8.4.3 盛土下液状化抵抗率 FLB の算定結果

図 8.4.2 h、d_c、nのとり方

よって、液状化層(As1 層)における $r_{uB} \cdot r_{umax}$ は以下のようになる。 $r_{uB}=0.270$ n=10.0/5.0=2.00 $a=0.15\times(1/2.00-0.1)=0.060$ $r_{umax}=1-0.060\cdot(5.0/3.25)=0.908$ a_1 は、 $r_{uB} \cdot r_{umax}$ のいずれか小さい方をとり、以下のようになる。 $a_1=r_{uB}=0.270$ ($\leq r_{umax}=0.908$)

同様に、液状化層(As2 層)における $r_{uB} \cdot r_{umax}$ は以下のようになる。 $r_{uB} = 0.000$ n = 10.0/5.0 = 2.00 $a = 0.15 \times (1/2.00 - 0.1) = 0.060$ $r_{umax} = 1 - 0.060 \cdot (5.0/9.00) = 0.967$

 α_1 は、 $r_{uB} \cdot r_{umax}$ のいずれか小さい方をとり、以下のようになる。

 $\alpha_1 = r_{\text{uB}} = 0.000 \quad (\leq r_{\text{umax}} = 0.967)$

α₂の算定

α2は、鋼材の相対剛性に関する係数であり、以下により求める。

 $\alpha_2 = 0.32 \cdot \log 10 \ (\rho) \ -0.16 \ (ただし、 0.4 \le \alpha_2 \le 1.0)$ $\rho = (E \cdot Z_a / b) \ / \ (\gamma_{sat} \cdot H^3)$ ここに、

- *ρ*:鋼材の相対剛性
- E :鋼材の弾性係数 (kN/m²)
- Za: 鋼材の断面係数(m³)(腐食無し、継手効率1.0)
- *b* :壁幅 (m)
- ysat:液状化層の飽和単位体積重量(kN/m³)
- H : 液状化層厚(m)(反力側)

- $\gamma_{\text{sat}} = (19.0 \times 3.50 + 20.0 \times 2.00) / 5.50 = 19.364$
- $\rho = (2.0 \times 10^8 \times 0.000902 / 1.0) / (19.364 \times 5.50^3) = 56.00$
- $\alpha_2 = 0.32 \times \log 10 (56.00) -0.16 = 0.399$
- *α*₃の算定
 - α3は、盛土形状に関する補正係数であり、以下により求める。
 - $a_3 = 0.0236 \ (B_u/2) \ -0.0126 \times B_b + 1.071 \ (ただし、6m \le B_u \le 20m, \ 10m \le B_b \le 20m)$ ここに、
 - *B*_u : 盛土天端幅(m)
 - Bb : 盛土ののり肩からのり尻までの水平距離(m)
 - よって、α3は、以下のようになる。

 $\alpha_3 = 0.0236 \times (6.0/2) - 0.0126 \times 10.0 + 1.071 = 1.016$

- a_3 の算定の適用範囲は $6m \leq B_u \leq 20m$ とあるが、 $B_u < 6m$ の場合(今回 $B_u = 5m$)は、便宜上、 安全側の評価として $B_u = 6m$ として計算を行うものとする。
- •*F*(z)の算定

F(z)は、盛土漸増成分荷重の基本分布関数であり、以下による。これは、各種形状の盛 土を有する数値解析結果を近似的にまとめたものである。

 $F(z) = \gamma_t \cdot h \cdot (0.00054z^3 - 0.0149z^2 + 0.140z + 0.275)$ (ただし、 $0m \le z \le 10m$) $F(z) = 0.725\gamma_t \cdot h \quad (ただし、z > 10m)$

- ここに、
 - z : 地表面からの深さ(m)
 - γt : 盛土の湿潤単位体積重量(kN/m³)
 - *h* : 盛土高さ(m)

3) 振動成分荷重の算定

鋼材に作用する液状化層の振動成分荷重は、実験、解析から、鋼材のたわみ性(相対剛性) 等に依存することが確認されている。これらを考慮して、鋼材に作用する液状化層の振動成 分荷重は以下の式により求めた。

$$P_{\rm d} = \alpha_{\rm d} \cdot P_{\rm dmax}$$

ここに、

P_d : 振動成分荷重

Pdmax : 振動成分荷重の最大値

*α*_d:鋼材の相対剛性に関する係数

・*P*dmaxの算定

Pdmax は、振動成分荷重の最大値であり、Westergardの式を基本として、以下により求める。

$$P_{d\max} = k (\gamma_w + \gamma' r_u) \sqrt{H_d z}$$

ここに、

- k : 設計水平震度
- γ_w : 水の単位体積重量 (kN/m³)
- γ':土の水中単位体積重量(kN/m³)
- ru :堤防盛土外側の平地盤部での過剰間隙水圧比
- H_d:水位面から最も下の液状化層下端までの距離(m)
- z :地下水位からの深度(m)

*α*_dの算定

αdは、鋼材の相対剛性に関する係数であり、以下により求める。

 $\alpha_d = 0.40 \cdot \log 10 \ (\rho) \ -0.40 \ (ただし、0 \le \alpha_d \le 1.0)$

よって、ad は以下のようになる。

$$\rho = 56.00$$

 $\alpha_d = 0.40 \times \log 10$ (56.00) -0.40 = 0.299

No	深度	k	r _u	γ°	$H_{ m d}$	z	$P_{\rm dmax}$	$\alpha_{\rm d}$	P _d
	(m)			(kN/m ³)	(m)	(m)	(kN/m^2)		(kN/m ²)
1	0.00	0.18	-	9.00	8.50	-	-	-	0.00
2	1.50	0.18	-	9.00	8.50	-	-	-	0.00
3	1.50	0.18	1.00	9.00	8.50	0.00	0.00	0.299	0.00
4	1.73	0.18	1.00	9.00	8.50	0.23	4.78	0.299	1.43
5	1.97	0.18	1.00	9.00	8.50	0.47	6.84	0.299	2.04
6	2.20	0.18	1.00	9.00	8.50	0.70	8.34	0.299	2.49
7	2.43	0.18	1.00	9.00	8.50	0.93	9.62	0.299	2.88
8	2.67	0.18	1.00	9.00	8.50	1.17	10.79	0.299	3.22
9	2.90	0.18	1.00	9.00	8.50	1.40	11.80	0.299	3.53
10	3.13	0.18	1.00	9.00	8.50	1.63	12.73	0.299	3.81
11	3.37	0.18	1.00	9.00	8.50	1.87	13.64	0.299	4.08
12	3.60	0.18	1.00	9.00	8.50	2.10	14.45	0.299	4.32
13	3.83	0.18	1.00	9.00	8.50	2.33	15.22	0.299	4.55
14	4.07	0.18	1.00	9.00	8.50	2.57	15.98	0.299	4.78
15	4.30	0.18	1.00	9.00	8.50	2.80	16.68	0.299	4.99
16	4.53	0.18	1.00	9.00	8.50	3.03	17.36	0.299	5.19
17	4.77	0.18	1.00	9.00	8.50	3.27	18.03	0.299	5.39
18	5.00	0.18	1.00	9.00	8.50	3.50	18.65	0.299	5.58
19	5.00	0.18	-	8.00	8.50	-	-	-	0.00
20	8.00	0.18	-	8.00	8.50	-	-	-	0.00
21	8.00	0.18	0.67	10.00	8.50	6.50	22.34	0.299	6.68
22	8.20	0.18	0.67	10.00	8.50	6.70	22.68	0.299	6.78
23	8.40	0.18	0.67	10.00	8.50	6.90	23.02	0.299	6.88
24	8.60	0.18	0.67	10.00	8.50	7.10	23.35	0.299	6.98
25	8.80	0.18	0.67	10.00	8.50	7.30	23.68	0.299	7.08
26	9.00	0.18	0.67	10.00	8.50	7.50	24.00	0.299	7.18
27	9.20	0.18	0.67	10.00	8.50	7.70	24.32	0.299	7.27
28	9.40	0.18	0.67	10.00	8.50	7.90	24.63	0.299	7.37
29	9.60	0.18	0.67	10.00	8.50	8.10	24.94	0.299	7.46
30	9.80	0.18	0.67	10.00	8.50	8.30	25.25	0.299	7.55
31	10.00	0.18	0.67	10.00	8.50	8.50	25.55	0.299	7.64

表 8.4.4 振動成分荷重の算定結果

※平均 F_L=0.89(As1 層), 1.06(As2 層)

As1 層 : ru=1.00

As1 層:
$$r_u = 1.00$$
($F_L \le 1$)As2 層: $r_u = F_L^{-7} = 1.06^{-7} = 0.67$ ($1 < F_L \le 1.3$)

(6) 設計計算モデル

荷重および設計計算モデルは、液状化に対する抵抗率に従って分類した土層区分に基づき設定した。ここでの設計計算モデルを図8.4.3に示す。

図 8.4.3 設計計算モデル

(7) 計算結果および計算結果の照査

鋼材の設計計算結果より対策工諸元設定用震度に対して、鋼材に発生する応力度が許容応力 度以内であることを照査した。

計算結果および応力度の照査結果を以下に示す。鋼矢仮に発生する断面応力度は、許容応力 度以内であった。曲げモーメント図を図8.4.4に示す。

- ・最大曲げモーメント : $M_{\text{max}} = 65.49$ kN・m/m
- ・断面応力度 : $\sigma_{\text{max}} = M_{\text{max}} / Z = 65.49 \times 10^6 / 713 \times 10^3 = 92 \text{N/mm}^2 < 270 \text{N/mm}^2$ ここに、

Z:断面係数

図 8.4.4 曲げモーメント図 (SP-10H)

8.4.2 耐震性能照查

8.4.1 によって設定した対策工を施した堤防のレベル2 地震動に対する耐震性能について有限 要素法による自重変形解析により照査を行った。耐震性能を満足しない場合には、対策工諸元を 見直し、再度照査を行い、耐震性能を満たす対策工諸元を決定する。

(1) 対策工諸元

鋼矢板は弾性梁要素でモデル化した。なお、鋼矢板〜地盤間にジョイント要素は使用してい ない。鋼矢板の長さや弾性係数、断面二次モーメント等を鋼矢板諸元から設定した。物性値を 表 8.4.5 に示す。

矢板型式	矢板長	単位体積 重量	弾性係数	ポアソン比	断面積	断面 2 次 モーメン ト
	m	kN/m ³	kN/m ²		m²/m	m ⁴ /m
SP-10H	10	77	2.0×10^{8}	0.30	9.7×10 ⁻³	8.3×10 ⁻⁵

表 8.4.5 鋼矢板をモデル化した梁要素の物性値

(2) 耐震性能照査による対策工の検討

解析結果を表 8.4.7 に示す。いずれの地震動においても、地震後の堤防高さが耐震性能の照査 において考慮する外水位を下回っており、耐震性能を満足していない。そのため、鋼矢板型式や 根入れ長の変更し、再度照査を行った。

表 8.4.6 対策工諸元設定の流れと決定諸元

表 8.4.7 解析結果

2-i 対策工諸元設定断面による変形解析結果

対策工諸元設定によって決定した断面について変形解析を行った結果、表 8.4.7 に示 す通り沈下後堤防高さが照査外水位を満足しない結果となった。

②-ii 対策工諸元の見直し

前述の液状化対策の設計の手順に基づき、所定の耐震性能を満足しなかった場合の対 処として対策工諸元を見直し、再度耐震照査を行った。

具体的には、対策工諸元設定用震度を対象に決定した対策工諸元を最低諸元とし、所 定の耐震性能を満足するまで鋼矢板型式・根入れ長を大きくするものであるが、施工性 の観点から鋼矢板長に応じた型式を選定することも必要である。

ここでは、鋼矢板根入れをL2のみ液状化するAs2層下部のAc2層(非液状化層)まで伸ばした場合の施工性の観点から、鋼矢板型式をSP-10HからSP-25Hへ上げ、かつ耐震性能を満足するまで根入れ長を伸ばした。物性値を表8.4.8に示す。非液状化層への根入れ長さ=3.0mとした時の解析結果を表8.4.9に記載する。いずれの地震動においても、地震後の堤防高さが耐震性能の照査において考慮する外水位を上回っており、耐震性能を満足すると判定される。

なお、As2層の液状化強度が本ケースよりも大きい場合、該当する層での変形量が小さ く、その層内に根入れを留めても耐震性能を満足することも考えられる。各種設計条件 に応じて適切に対策工諸元を設定することが望まれる。

ここでは、通常の矢板で検討を行ったが、排水機能付き矢板で検討すると過剰間隙水 圧低減効果から対策工諸元設定の段階で規格の小さいものが設定される場合もあり、耐 震性能に余裕がある場合は検討するとよい。

矢板型式	矢板長	単位体積 重量	弾性係数	ポアソン比	断面積	断面2次 モーメン ト
	m	kN/m ³	kN/m ²		m²/m	m ⁴ /m
SP-25H	16	77	2.0×10^{8}	0.30	1.3×10 ⁻²	2.0×10 ⁻⁴

表 8.4.8 鋼矢板をモデル化した梁要素の物性値

表 8.4.9 解析結果

8.4.3 浸透安全性照查

前項までに決定した対策工を入れた断面に対して、「河川堤防の構造検討の手引き」に準 じた検討を行い、液状化対策工によって現況に対して堤防の浸透安全性が有意に低下しな いことを照査した。

(1) 地盤モデルとパラメータ

地盤モデルとパラメータを 8.2.1 に示した通りである。8.2.1 以外のパラメータは 「河川堤防の構造検討の手引き」に準拠した。

浸透流解析に用いるメッシュは、変形解析のメッシュを準用した。

(2) 外力の設定

詳細に用いる降雨、洪水の外力は8.2.6 に示した通りである。

(3) 解析結果

現況解析の結果と対策後の結果を表 8.4.10 に示す。

対策後(矢板工)の局所動水勾配が0.417から1.340に増加(安全性が低下)したため、 補助対策工の検討を行った。ここではドレーン工を補助対策工に選定し、浸透安全性の 照査を行った結果、局所動水勾配(水平)が0.391まで減少し、その他の項目も全て現 況を上回る結果となった。

検討な、フ	局所動	水勾配	円弧すべり安全率		
(英)的 / · · · · ·	鉛直 iv	水平 ih	川表 Fs	川裏 Fs	
現 況	0.313	0.417	0.783	0.752	
矢板工	0.035	1.340	0.764	0.730	
矢板工+ドレーン	0.014	0.391	0.785	0.927	

表 8.4.10 浸透安全性の照査結果一覧

-208-

第9章 計算例 7:堤体液状化対策

9.1 設計手順

図 9.1.1 に堤体液状化対策工法の設計手順を示す。定常浸透流解析で現況の堤体内水位 を再現し、対策工の種類(ドレーン工、押え盛土工)を選定した上で、対策工の初期諸元 (対策規模)を既設堤体の形状(堤防高さやのり勾配)を基準として設定する。現況再現 時に得られた降雨量を用いた定常浸透流解析により対策後の堤体内水位を算出し、この条 件においてレベル2地震動に対する耐震性能照査(有限要素法による自重変形解析)を実 施する。その結果、耐震性能を満足しない場合には、ドレーン工では高さもしくは貫入量 を大きくすることで、押え盛土工では高さもしくは幅を大きくすることで対策工諸元を見 直し、耐震性能を満足する諸元を設定する。耐震性能照査の結果、設定した初期諸元が照 査外水位に対してかなりの余裕がある対策となった場合には、対策工の規模を小さくして 良い。なお、これら対策工の諸元は、現場条件や施工条件などを総合的に判断して設定す ることが必要である。

図 9.1.1 堤体液状化対策工法の設計手順

9.2 設計条件

9.2.1 地盤条件

(1) 基本諸元

図 9.2.1 に耐震性能照査の対象とする堤体および地盤構造を示す。表 9.2.1 には室内試験結果より設定した各層の地盤定数を示す。

図 9.2.1 耐震性能照査対象とする堤体および地盤構造

土層区分	土層厚 (m)	層区分	深度 (m)	N値	[平均値] N値	土の単位 体積重量 γ(kN/m ³)	[平均値] 細粒分 含有率 Fc(%)	土の 粘着力 <i>c</i> (kN/m ²)	土の 内部摩擦角 <i>φ</i> (°)	透水係数 <i>k</i> (m/sec)
17.4		砂質土	1.3	2						
堤体	5.0	砂質土	2.3	5						
Bs		砂貨土	3.3		4.0	0 18.0	28	0	30	1.0×10^{-6}
相任的。		砂頂工	4.3	3						
定14-BS (めりえみ部)	1.5	砂質上	<u> </u>							
(4) 5 2 4 6 6 7 6 6 7		北性十	7.3	3						
		<u>北</u> 本	83							
	12.0	粘性土	93	1		16.0		40		
		粘性十	10.3	1	1.1					
		粘性土	11.3	1						
沖積粘性土		粘性土	12.3	1					5 0 ~ 5	
Ac		粘性土	13.3	0			90			1.0×10^{-6}
		粘性土	14.3	1						
		粘性土	15.3	1						
		粘性土	16.3	0				55		
		粘性土	17.3	1						
		粘性土	18.3	2						
泄 積粘性十		粘性土	19.3	7	ļ					
Dc1	3.0	粘性土	20.3	8	9.0	17.0	94	65	0	1.0×10^{-8}
201		粘性土	21.3	12						
洪積粘性十		粘性土	22.3	19					_	0
Dc2	-	粘性土	23.3	22	21.3	17.0	96	70	0	1.0×10^{-8}
		粘性土	24.3	23						

表 9.2.1 地盤条件

(2) 地盤種別の判定

指針に基づき地盤種別の判定を行った。表 9.2.2 に地盤種別の判定結果を示す。洪積粘性土 Dc2 を耐震性能照査上の基盤面とし地盤の特性値 *T*_G を算出すると、*T*_G=0.713(s)となるため、本地盤はⅢ種地盤と判定される。

地層区分	地層厚 Hi (m)	地層の 平均せん断 波速度 Vsi(m/s)	4Hi/Vsi (s)	備考
盛土 Bs	5.0	120	-	
盛土Bs (めり込み部)	1.5	120	0.050	各層のせん断
沖積粘性土 Ac	12.0	80	0.600	波速度は、PS 検層にて確認
洪積粘性土 Dc1	3.0	190	0.063	CALCY S
洪積粘性土 Dc2	-	300	-	
		4Σ Hi/Vsi=	0.713	(Ⅲ種地盤)

表 9.2.2 耐震性能照査上の地盤種別の判定

9.2.2 入力地震動条件

入力地震動は、指針に基づき以下のように設定した。

1) 対策工諸元設定用震度

 $k_h = C_Z \times k_{GO}$

k_h : 対策工諸元設定用水平震度(0.18)

- k₆₀ : 地盤種別に応じた標準水平震度(Ⅲ種地盤:0.18)
- Cz : 地域別補正係数(地域区分 A2:1.0)

1) レベル2地震動

 $k_{hgL} = C_Z \times k_{hgL0}$

- k_{hgL}: 液状化の判定に用いる地盤面の水平震度 (レベル 2-1 地震動: 0.40、レベル 2-2 地震動: 0.60)
- k_{hgL0}: 液状化の判定に用いる地盤面の水平震度の標準値 (Ⅲ種地盤、レベル 2-1 地震動:0.40、レベル 2-2 地震動:0.60)
- Cz : 地域別補正係数(地域区分A2:1.0)

地震重	助	地盤 種別	k _{G0} k _{hgL0}	地域 区分	Cz	k_h k_{hgL}
対策工記 設定用寫	者元 §度		018			0.18
レベル2	L2-1	Ⅲ種	0.40	A2	1.0	0.40
地震動	L2-2		0.60			0.60

表 9.2.3 入力地震動

9.2.3 液状化判定

指針に基づき液状化判定を実施した。図 9.2.2、表 9.2.4、表 9.2.5 に対策工諸元設定 用震度およびレベル 2 地震動に対する液状化判定結果を示す。これより、堤体 Bs が対策工 諸元設定用震度およびレベル 2 地震動に対する液状化層となる。

図 9.2.2 液状化に対する抵抗率 FLの深度方向分布

								Ш	围									-									ſ	
Vert.		圳定结里				•	'	完全液状化质	完全液状化质	完全液状化质	-			'	'		'	'	-		•	-		'	'			'
元設定用震度	液状化に	対する	抵抗率	F_{L}	I			0.97	0.99	1.00	-		-	-	·	-	-	-	-		-	-	ı	-	-	ı		
対策工諸	動的	せん野	強度比	R				0.206	0.224	0.239				-			-				-	-	-	-		-		1
	地震時	せん野	応力比	L				0.211	0.226	0.238	-			-			-	-	-		-	-	ı	-				
	繰返し三軸	強度比	$R_{ m L}$					0.207	0.224	0.240	-			-			-		-		-	-	ı	-				
	細粒分	含有率	FC (%)		36	32	30	32	33	34	65	80	94	95	93	94	97	92	92	97	91	93	96	94	92	96	20	PK PK
	土の単位	体積重量	$\gamma(kN/m^3)$		18	18	18	18	18	18	16	16	16	16	16	16	16	16	16	16	16	16	17	17	17	17	ŗ	1/
	屠亚钓	 N值	1			,		+.0	1		;							9.0				C.12						
		N値			2	5	5	3	4	5	3	1	1	1	1	1	0	1	1	0	1	2	7	8	12	19	ç	77
	海市	x) (m)	Ì		1.3	2.3	3.3	4.3	5.3	6.3	7.3	8.3	9.3	10.3	11.3	12.3	13.3	14.3	15.3	16.3	17.3	18.3	19.3	20.3	21.3	22.3	72.2	0.04
		層区分			砂質土	砂質土	砂質土	砂質土	砂質土	砂質土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	粘性土	+ +++++	
	直 困 十	t (m)	Ì			04	0.0		21	CI		<u>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </u>								3.0								
									堤体Bs	(めり込み部)						沖積粘性土	Ac						「丁 +村 -1不 年史 +1℃	供慎和性工	DCI	┼╶╫╵┑╧╪╶╫╲	沃倶和国土	¢ C

表 9.2.4 液状化判定結果(対策工諸元設定用震度)

									Ĺ	ベンシー1地震	Ц1		ルベイ	ク-2批震動	
	le Dă		田房		四 117 117	土の単位	御粒分	繰返し三軸	地震時	動的	液状化に	地震時	動的	液状化に	
土層区分	工厂	層区分	米皮	N值	画 1 1 1 月	体積重量	含有率	強度比	せん断	せん断	対する	せん断	せん断	対する	
	Ê)		(II)		N Ⅲ	γ (kN/m ³)	FC (%)	$R_{\rm L}$	応力比	強度比	抵抗率	応力比	強度比	抵抗率	判还結果
									L	R	F_{L}	Г	R	F_{L}	
		砂質土	1.3	2		18	36	-	-	-	-	-		-	-
堤体	0 4	砂質土	2.3	5		18	32								
Bs	0.0	砂質土	3.3	5		18	30	-	'	'		-		-	-
		砂質土	4.3	3	4.0	18	32	0.207	0.469	0.206	0.43	0.703	0.279	0.39	完全液状化層
堤体Bs	4	砂質土	5.3	4		18	33	0.224	0.503	0.224	0.44	0.755	0.316	0.41	完全液状化層
(めり込み部)	C.I	砂質土	6.3	5		18	34	0.240	0.528	0.239	0.45	0.792	0.350	0.44	完全液状化層
		粘性土	7.3	3		16	65			1		I		1	ı
		粘性土	8.3	1		16	80		,		,	-	-		-
		粘性土	9.3	-		16	94							,	
		粘性土	10.3	1		16	95		-		'	•	-		•
		粘性土	11.3	1		16	93			·				1	·
沖積粘性土		粘性土	12.3	1	-	16	94	-	-	-	-	-		-	-
Ac	12.0	粘性土	13.3	0	1.1	16	76							-	
		粘性土	14.3	1		16	92						-		
		粘性土	15.3	1		16	92	-		-				-	
		粘性土	16.3	0		16	76	'	-		'	,		-	,
		粘性土	17.3	1		16	91			-			-	-	
		粘性土	18.3	2		16	93	-	-	-	-		-	-	-
十十十十十十十		粘性土	19.3	7		17	96	-	-	-	-	-	-	-	-
法惧而压工	3.0	粘性土	20.3	8	9.0	17	94						-	-	
1201		粘性土	21.3	12		17	92	-	-	-	-			-	-
洲 藉 粘 性 十		粘性土	22.3	19		17	96			-		-		-	-
	1	粘性土	23.3	22	21.3	17	96			-			-	-	
777		粘性土	24.3	23		17	95	-	-	-	-	-	-	-	-

表 9.2.5 液状化判定結果(レベル2地震動)

9.2.4 照査基準

レベル2地震動に対して、地震後の堤防高さが以下の外水位を下回らないことを照査する。

照查外水位 : EL.+3.75m

9.2.5 対策工諸元設定上の制約条件

図 9.2.3 に対策工諸元設定上の制約条件を示す。実際の検討断面では現地状況や施工条件等から様々な制約条件が設定される。本計算モデルでは、図に示すように、押え盛土工を検討する場合には堤外側、ドレーン工を検討する場合には堤内側にて実施することを条件として諸元を設定する。

図 9.2.3 対策工諸元設定上の制約条件

9.2.6 浸透安全性の評価に用いる外力

対策後に浸透安全性が現況に比べ有意に低下しないことを評価するために、「河川堤防の 構造検討の手引き」に準じて実施する。

ここでは、降雨、洪水の外力を以下の通りとした。

〇降雨
事前降雨: 300mm
洪水降雨: 300mm
○水位
計画高水位継続時間:1hr
高水位継続時間:100hr
計画高水位継続時間:0.7m/hr
計画高水位:EL.+3.25m
平水位:EL1.50m

図 7.2.4 設定した降雨、洪水波形

9.3 現況の照査

現況堤防のレベル2地震動に対する耐震性能照査は、有限要素法による自重変形解析(静 的照査法)により実施した。

(1) 解析モデル

図 9.3.1に解析モデルおよび設定パラメータを示す。また、解析上の地下水位および解 析モデルの境界条件は以下の通り設定した。

[地下水位]

先に示した地下水位(堤体)から一律0.5m上側に設定することとし、EL.+1.5mとする。

[境界条件]

側方境界 : 付加地盤(左右両側共 50m)および鉛直ローラ(X 固定) 底面境界 : 固定(X、Y 固定)

として設定。 ※粘性土の変形係数 Boは、砂質土と粘性土の微小ひずみレベルでのせん断剛性の差(比率)に基づき、Eg=2800N ではなく 4400N(N:N 値) ※ダイレイタンシー角 ψ は、ψ= φ -20(20°を上限値)で設定。

図 9.3.1 解析モデル

(2) 耐震性能照查結果

図 9.3.2、図 9.3.3 に現況堤防のレベル 2 地震動に対する耐震性能照査結果を示す。これより、レベル 2-1 地震動およびレベル 2-2 地震動ともに、地震後の堤防高さが照査外水位を下回るため、対策工の検討が必要となる。

[照査結果]

レベル 2-1 地震動	:	(地震後堤防高さ)EL.+2.93m	<	(照查外水位)EL.+3.75m	(NG)
レベル 2-2 地震動	:	(地震後堤防高さ)EL.+2.73m	<	(照查外水位)EL.+3.75m	(NG)

(b) 液状化に対する抵抗率 FL分布

図 9.3.2 レベル 2-1 地震動に対する照査結果

(b)液状化に対する抵抗率 F∟分布

図 9.3.3 レベル 2-2 地震動に対する照査結果

9.4 対策後の照査

9.4.1 対策工諸元の設定

(1) 透流解析による堤体内水位の設定(対策前)

対策前の堤体内水位が再現できるよう、降雨量を調整した定常浸透流解析を実施した。 ここでは、対策前の堤体内水位が再現するために、降雨強度を 5.5mm/hr に設定した。

図 9.4.1 対策前の堤体内水位の再現

(2) 対策規模の設定

川裏側にドレーン工、川表側に押え盛土工を設計することとした。 (現況堤防の条件 堤防高さ 5.0m、のり勾配 1:2.0)

○ドレーン工の規模の初期値

高さ:0.5m(下限値)

堤体内への貫入量: 3.0m(初期値=堤防高さの6割)

○押え盛土工の規模の初期値

のり勾配:1:2.0(下限値) 高さ:2.5m(初期値=堤防高さの5割) 幅:5.0m(初期値=堤防高さ)

図 9.4.2 設定した初期対策工の規模

(3) 浸透流解析による堤体内水位の設定(対策後)

設定した対策工を入れた対策後の断面で定常浸透流解析を実施する。降雨強度は対 策前の解析で得られた 5.5mm/hr とした。

対策前に比べ堤体内の水位が低下したことが分かる。

図 9.4.3 対策後の堤体内水位の再現

9.4.2 耐震性能照查

9.4.1によって設定した対策工を施した堤防のレベル2地震動に対する耐震性能について、静的照査法(有限要素法による自重変形解析)により照査を行った。解析で用いる堤体内水位は、9.4.1(3)で設定した水位を50cm上昇させたものとする。耐震性能を満足しない場合には、対策工諸元を見直して再度照査を行い、耐震性能を満たす対策工諸元を決定する。

(1) 対策工諸元

対策工諸元設定において決定した改良地盤の入力パラメータを以下に示す。原地盤と 堤防は 9.1 と同様である。ドレーン工および押え盛土工は砕石を想定した。

項目	ドレーンエ	押え盛土
せん断剛性係数 G (kN/m^2)	10000	10000
ポアソン比 <i>ν</i>	0.333	0.333
湿潤単位体積重量 γ _t (kN/m ³)	15.0	15.0
粘着力 C (kN/m ²)	0.00	0.00
せん断抵抗角 ϕ (°)	40.0	40.0
透水係数 k (m/sec)	1.00×10^{-4}	1.00×10^{-4}

表 9.4.1 対策工のパラメータ

(2) 耐震性能照査による対策工の検討

対策工をモデル化した堤防断面において変形解析を行った結果、沈下後堤防高さが照 査外水位を上回る結果となった。許容値に対して余裕があるため対策規模を縮小した対 策諸元を再度設定した。対策工諸元設定の流れと決定した諸元を表 9.4.2 に示す。

表 9.4.2 対策工諸元設定の流れと決定諸元

2-i 対策工諸元設定断面による変形解析結果

対策工諸元設定によって決定した断面について変形解析を行った結果、以下に示す通り 沈下後堤防高さが照査外水位を十分に上回っており、耐震性能を満足する結果となった。

2-ii 対策工諸元見直し設定断面による変形解析結果

②-i照査の結果、沈下後堤防高さが照査外水位を十分満足しているため、最低限満足する諸元を検討した。

図 9.4.4 再設定した初期対策工の規模

表 9.4.3 耐震性能照査結果(その1)

表 9.4.4 耐震性能照査結果(その 2)

9.4.3 浸透安全性照查

前項までに決定した対策工を入れた断面に対して、「河川堤防の構造検討の手引き」に準 じた検討を行い、液状化対策工によって現況に対して堤防の浸透安全性が有意に低下しな いことを照査した。

(1) 地盤モデルとパラメータ

地盤モデルとパラメータを9.2.1に示した通りである。9.2.1以外のパラメータは「河 川堤防の構造検討の手引き」に準拠した。

ドレーン工および押え盛土工の透水係数は1×10⁻⁴(m/s)とした。 浸透流解析に用いるメッシュは、変形解析のメッシュを準用した。

(2) 外力の設定

詳細に用いる降雨、洪水の外力は9.2.6に示した通りである。

(3) 解析結果

現況解析の結果と対策後の結果を表9.4.5に示す。

対策後の浸透安全性(局所動水勾配、円弧すべり安全率)は、現況と比べ全ての項目 において上回った。

おきた、フ	局所動	水勾配	円弧すべ	円弧すべり安全率				
使 前 ク 一 ス	鉛直 iv	水平 ih	川表 Fs	川裏 Fs				
現 況	_	0.536	0.735	0.713				
押え盛土+ドレーン	_	0.341	1.106	0.784				

表 9.4.5 浸透安全性の照査結果一覧

第10章 おわりに

これまで7つのケースを通して、河川堤防の液状化対策としての締固め工法、固結工法、 鋼材を用いた工法、堤体液状化対策工法(ドレーン工法と押え盛土工法)の設計例を示し てきた。これらの設計例は、設計方法を正しく理解していただくことを目的としたもので ある。

実際の設計において、本計算例をそのまま適用できる場合は少なく、現場条件を十分に 把握した上で、その条件内で最も合理的な答えを導き出すことが求められる。とは言え、「結 果的に」、本計算例と同じような考え方を一部で採用することは多々あるはずである。当然 ながら、そういう結果になることを想定しながら、本計算例を執筆している。ただし、計 算例に示された方法を採用する根拠は、「本計算例に書いてあるから」ではなく、「調査・ 検討した結果、現場条件と方法の適用条件が適合し、合理的な答えに繋がるものであるか ら」でなくてはならない。「結果的に」という前置きを付けたのはそういう意味である。

「河川堤防の液状化対策工法設計施工マニュアル(案)(土木研究所資料第3513号)」か ら「河川堤防の液状化対策の手引き(土木研究所資料第4332号)」に変わることで、設計 の自由度が格段に向上した。設計担当者の裁量が増えたとも、コスト縮減のチャンスが増 えたとも言える。このチャンスを活かすには、多くの計算を行う必要が生じてきている。 計算機の能力が大幅に向上しているものの、考えられる全ての組み合わせを漫然と行って いてはチャンスを活かすことはできないだろう。チャンスを活かすには、現場条件から筋 道を立てて、組み合わせを絞り込んで行くことが極めて重要となる。こういう所にも、発 注者・受注者の双方の高い技術力が求められていることを認識していただきたい。

繰り返しになるが、本計算例を通じて、手引きに示された設計方法が正しく理解され、 合理的で質の高い社会資本ストックの形成に繋がることを期待する。

土木研究所資料 TECHNICAL NOTE of PWRI No.4346 August 2017

編集·発行 ©国立研究開発法人土木研究所

本資料の転載・複写の問い合わせは

国立研究開発法人土木研究所 企画部 業務課 〒305-8516 茨城県つくば市南原1-6 電話029-879-6754